Genome-wide identification, characterization, and expression analysis unveil the roles of pseudouridine synthase (PUS) family proteins in rice development and stress response

Physiology and Molecular Biology of Plants - Tập 29 Số 12 - Trang 1981-2004 - 2023
Yashika Dhingra1, Milinda Lahiri1, N. N. Bhandari1, Inderjit Kaur1, Shitij Gupta1, Manu Agarwal2, Surekha Katiyar-Agarwal1
1Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021, India
2Department of Botany, University of Delhi, North Campus, Delhi, 110007, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Araki S, Le NT, Koizumi K et al (2020) miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat Commun. https://doi.org/10.1038/s41467-020-16637-3

Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):0404–0418. https://doi.org/10.1371/journal.pbio.0030085

Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in arabidopsis thaliana. BMC Plant Biol. https://doi.org/10.1186/1471-2229-4-10

Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert W (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146. https://doi.org/10.1038/nature13802

Chandran V, Wang H, Gao F et al (2019) miR396-osgrfs module balances growth and rice blast disease-resistance. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01999

Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49(5):341–351. https://doi.org/10.1080/152165400410182

Cheah BH, Nadarajah K, Divate MD, Wickneswari R (2015) Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genom. https://doi.org/10.1186/s12864-015-1851-3

Dhingra Y, Gupta S, Gupta V, Agarwal M, Katiyar-Agarwal S (2023) The emerging role of epitranscriptome in shaping stress responses in plants. Plant Cell Rep. https://doi.org/10.1007/s00299-023-03046-1

Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64(11):3077–3086. https://doi.org/10.1093/jxb/ert164

Dong H, Ma X, Zhang P, Wang H, Li X, Liu J, Bai L, Song C, peng. (2020) Characterization of arabidopsis thaliana root-related mutants reveals aba regulation of plant development and drought resistance. J Plant Growth Regul 39(3):1393–1401. https://doi.org/10.1007/s00344-020-10076-6

Eyler DE, Franco MK, Batool Z, Wu MZ, Dubuke ML, Dobosz-Bartoszek M, Jones JD, Polikanov YS, Roy B, Koutmou KS (2019) Pseudouridylation of mRNA coding sequences alters translation. Proc Natl Acad Sci USA 116(46):23068–23074. https://doi.org/10.1073/pnas.1821754116

Feng Q, Wang H, Yang XM et al (2022) Osa-miR160a confers broad-spectrum resistance to fungal and bacterial pathogens in rice. New Phytol 236(6):2216–2232. https://doi.org/10.1111/nph.18491

Feng T, Zhang ZY, Gao P, Feng ZM, Zuo SM, Ouyang SQ (2023) Suppression of rice Osa-miR444.2 improves the resistance to sheath blight in rice mediating through the phytohormone pathway. Int J Mol Sci. https://doi.org/10.3390/ijms24043653

Fitzek E, Joardar A, Gupta R, Geisler M (2018) Evolution of eukaryal and archaeal pseudouridine synthase pus10. J Mol Evol 86(1):77–89. https://doi.org/10.1007/s00239-018-9827-y

Foster PG, Huang L, Santi D et al (2000) The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Nat Struct Biol 7(1):23–27. https://doi.org/10.1038/71219

Gao Y, Feng B, Gao C, Zhang H, Wen F, Tao L, Fu G, Xiong J (2022) The evolution and functional roles of miR408 and its targets in plants. Int J Mol Sci. https://doi.org/10.3390/ijms23010530

Garretón V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130(3):1516–1526. https://doi.org/10.1104/pp.009886

Hamma T, Ferré-D’Amaré AR (2006) Pseudouridine synthases. Chem Biol 13(11):1125–1135. https://doi.org/10.1016/j.chembiol.2006.09.009

He Q, Peng J, Yan F, Lin L, Lu Y, Zheng H, Chen H, Chen J (2012) Intron retention and 3’-UTR analysis of arabidopsis dicer-like 2 transcripts. Mol Biol Rep 39(3):3271–3280. https://doi.org/10.1007/s11033-011-1095-5

Huang S, Zhou J, Gao L, Tang Y (2021) Plant miR397 and its functions. Funct Plant Biol 48(4):361–370. https://doi.org/10.1071/FP20342

Karijolich J, Yi C, Yu YT (2015) Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 16(10):581–585. https://doi.org/10.1038/nrm4040

Kaya Y, del Campo M, Ofengand J, Malhotra A (2004) Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold. J Biol Chem 279(18):18107–18110. https://doi.org/10.1074/jbc.C400072200

Kim JS, Mizoi J, Yoshida T, Fujita Y et al (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in arabidopsis. Plant Cell Physiol 52(12):2136–2146. https://doi.org/10.1093/pcp/pcr143

Kurimoto R, Chiba T, Ito Y, Matsushima T, Yano Y, Miyata K, Asahara H (2020) The tRNA pseudouridine synthase TruB1 regulates the maturation of let-7 miRNA. EMBO J 39(20):e104708. https://doi.org/10.15252/embj.2020104708

Lermontova I, Schubert V, Börnke F, Macas J, Schubert I (2007) Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Mol Biol 65(5):615–626. https://doi.org/10.1007/s11103-007-9226-z

Li XP, Ma XC, Wang H et al (2020) Osa-miR162a fine-tunes rice resistance to magnaporthe oryzae and yield. Rice. https://doi.org/10.1186/s12284-020-00396-2

Li X, Yan Z, Zhang M et al (2023) SnoRNP is essential for thermospermine-mediated development in arabidopsis thaliana. Sci China Life Sci 66(1):2–11. https://doi.org/10.1007/s11427-022-2235-4

Lin D, Kong R, Chen L et al (2020) Chloroplast development at low temperature requires the pseudouridine synthase gene TCD3 in rice. Sci Rep. https://doi.org/10.1038/s41598-020-65467-2

Lin TY, Mehta R, Glatt S (2021) Pseudouridines in RNAs: switching atoms means shifting paradigms. FEBS Lett 595(18):2310–2322. https://doi.org/10.1002/1873-3468.14188

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Lu S, Li C, Zhang Y, Zheng Z, Liu D (2017) Functional disruption of a chloroplast pseudouridine synthase desensitizes arabidopsis plants to phosphate starvation. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01421

Machnicka MA, Milanowska K, Oglou OO, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucl Acids Res. https://doi.org/10.1093/nar/gks1007

Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth V et al (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68(9):2399–2412. https://doi.org/10.1093/jxb/erx111

Mani B, Agarwal M, Katiyar-Agarwal S (2015) Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01088

Martinez NM, Su A, Burns MC, Nussbacher JK, Schaening C, Sathe S, Yeo GW, Gilbert W (2022) Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell 82(3):645-659.e9. https://doi.org/10.1016/j.molcel.2021.12.023

McCleverty CJ, Hornsby M, Spraggon G, Kreusch A (2007) Crystal structure of human pus10, a novel pseudouridine synthase. J Mol Biol 373(5):1243–1254. https://doi.org/10.1016/j.jmb.2007.08.053

Mittal D, Mukherjee SK, Vasudevan M, Mishra NS (2013) Identification of tissue-preferential expression patterns of rice miRNAs. J Cell Biochem 114(9):2071–2081. https://doi.org/10.1002/jcb.24552

Nayyeripasand L, Garoosi GA, Ahmadikhah A (2021) Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice. https://doi.org/10.1186/s12284-020-00433-0

Nguyen DQ, Nguyen NL, Nguyen VT, Tran THG, Nguyen TH, Nguyen TKL, Nguyen HH (2023) Comparative analysis of microRNA expression profiles in shoot and root tissues of contrasting rice cultivars (Oryza sativa L.) with different salt stress tolerance. PLoS ONE. https://doi.org/10.1371/journal.pone.0286140

Niu Y, Liu L (2023) RNA pseudouridine modification in plants. J Exp Bot. https://doi.org/10.1093/jxb/erad323

Niu Y, Zheng Y, Zhu H, Zhao H, Nie K, Wang X, Sun L, Song CP (2022) The arabidopsis mitochondrial pseudouridine synthase homolog FCS1 plays critical roles in plant development. Plant Cell Physiol 63(7):955–966. https://doi.org/10.1093/pcp/pcac060

Ofengand J (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 514(1):17–25. https://doi.org/10.1016/S0014-5793(02)02305-0

Penzo M, Guerrieri AN, Zacchini F, Treré D, Montanaro L (2017) RNA pseudouridylation in physiology and medicine: for better and for worse. Genes. https://doi.org/10.3390/genes8110301

Perron K, Goldschmidt-Clermont M, Rochaix J-D (1999) A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J. https://doi.org/10.1093/emboj/18.22.6481

Purchal MK, Eyler DE, Tardu M et al (2022) Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2109708119/-/DCSupplemental

Rintala-Dempsey AC, Kothe U (2017) Eukaryotic stand-alone pseudouridine synthases–RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 14(9):1185–1196. https://doi.org/10.1080/15476286.2016.1276150

Scarpella E, Rueb S, Boot KJ, Hoge JH, Meijer AH (2000) A role for the rice homeobox gene Oshox1 in provascular cell fate commitment. Development 127(17):3655–3669. https://doi.org/10.1242/dev.127.17.3655

Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159(1):148–162. https://doi.org/10.1016/j.cell.2014.08.028

Sharma N, Tripathi A, Sanan-Mishra N (2015) Profiling the expression domains of a rice-specific microRNA under stress. Front Plant Sci 6(MAY):1–12. https://doi.org/10.3389/fpls.2015.00333

Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, Peng J, Li M, Yi C (2020) Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 16(2):160–169. https://doi.org/10.1038/s41589-019-0420-5

Spenkuch F, Motorin Y, Helm M (2014) Pseudouridine: Still mysterious, but never a fake (uridine)! RNA Biol 11(12):1540–1554. https://doi.org/10.4161/15476286.2014.992278

Sun L, Xu Y, Bai S, Bai X, Zhu H, Dong H, Wang W, Zhu X, Hao F, Song CP (2019) Transcriptome-wide analysis of pseudouridylation of mRNA and non-coding RNAs in arabidopsis. J Exp Bot 70(19):5089–5600. https://doi.org/10.1093/jxb/erz273

Wang P, Chen D, Zheng Y, Jin S, Yang J, Ye N (2018) Identification and expression analyses of sbp-box genes reveal their involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). Int J Mol Sci. https://doi.org/10.3390/ijms19113404

Wang Z, Sun J, Zu X et al (2022) Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. New Phytol 236(5):1708–1720. https://doi.org/10.1111/nph.18479

Xiang C, Miao Z-H, Lam E (1996) Coordinated activation of as-l-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol 32:415–426. https://doi.org/10.1007/BF00019093

Xie Y, Gu Y, Shi G, He J, Hu W, Zhang Z (2022) Genome-wide identification and expression analysis of pseudouridine synthase family in arabidopsis and maize. Int J Mol Sci. https://doi.org/10.3390/ijms23052680

Ying SY, Chang DC, Lin SL (2008) The MicroRNA (miRNA): Overview of the RNA genes that modulate gene function. Mol Biotechnol 38:257–268. https://doi.org/10.1007/s12033-007-9013-8

Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute, Manila, pp 61–66

Yu F, Liu X, Alsheikh M, Park S, Rodermel S (2008) Mutations in suppressor of variegation1, a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation in arabidopsis. Plant Cell 20(7):1786–1804. https://doi.org/10.1105/tpc.107.054965

Zlotorynski E (2022) Pseudouridylation alters splicing. Nat Rev Mol Cell Biol 23:167. https://doi.org/10.1038/s41580-022-00458-x