Genome-wide characterization and expression analysis of HAK K+ transport family in Ipomoea

3 Biotech - Tập 11 - Trang 1-18 - 2020
Rong Jin1, Wei Jiang1, Mengxiao Yan2, Aijun Zhang1, Ming Liu1, Peng Zhao1, Xiaoguang Chen1, Zhonghou Tang1
1Chinese Academy of Agricultural Sciences/Xuzhou Sweetpotato Research Center, Jiangsu/Key Laboratory of Sweetpotato Biology and Gentic Breeding, Sweetpotato Research Institute, Ministry of Agriculture, Xuzhou, China
2Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai, China

Tóm tắt

The potassium transporter high-affinity K+ transporter/K+ uptake permease/K+ transporter (HAK/KUP/KT) family plays a vital role in potassium uptake, and potassium ion (K+)-mediated environmental stress. In the present study, we identified 22 IbHAK/KUP/KT (HAK) genes in sweet potato [Ipomoea batata (L.) Lam] and the same number of HAK genes from sweet potato wild relative Ipomoea trifida. Phylogeny analysis indicated that the HAKs can be divided into five clades. Chromosomal distribution and genome synteny analyses revealed two tandem-duplicated gene pairs IbHAK16/17 and IbHAK17/18 on chromosomes 13 and eight segmental-duplicated gene pairs on chromosomes 1, 3, 5, 8, 10, 12, 14 among the IbHAK gene family. Eleven orthologous HAK gene pairs between I. batata and I. trifida were involved in the duplication of genomic blocks based on comparative genomic analysis. The Ka/Ks ratios of these IbHAK genes ranged from 0.02 to 0.55(< 1), further indicated that purifying selection was the primary force driving the evolution of HAKs in Ipomoea. A heat map based on RNA-seq data showed that 13 HAKs in Xushu32 (a K+-tolerant sweet potato genotype) and 10 HAKs in Ningzi1 (a K+-sensitive sweet potato genotype) in response to K+ deficiency stress. Quantitative real-time PCR (qRT-PCR) analysis revealed IbHAK2, -3, -8, -10, -11, -18, -19, and -21 were induced in both Xushu32 and Ningzi1 under low K+ stress. Compared with other IbHAK genes, IbHAK8 showed more strongly upregulation after exposure to drought and salt stress. Furthermore, co-expression analysis showed that only IbHAK8 of 22 IbHAK genes involved in network interactions with 30 genes related to abiotic and biotic stresses. Taken together, these results are helpful for further functional studies on IbHAK and molecular breeding of sweet potato.

Tài liệu tham khảo

Adams E, Miyazaki T (2018) Shin R (2019) Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis. Plant Signal Behav 10(1080/15592324):1554468 Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134(3):1135–1145. https://doi.org/10.1104/pp.103.034660 Alemán F, Caballero F, Rodenas R, Rivero RM, Martínez V, Rubio F (2014) The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression. Front Plant Sci 5:1–11. https://doi.org/10.3389/fpls.2014.00430 Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57(2):425–436. https://doi.org/10.1093/jxb/erj034 Bacha H, Ródenas R, López-Gómez E, García-Legaz MF, Nieves-Cordones M, Rivero RM, Martínez V, Botella M, Rubio F (2015) High Ca2+ reverts the repression of high-affinity K+ uptake produced by Na+ in Solanum lycopersycum L. (var. microtom) plants. J Plant Physiol 180:72–79. https://doi.org/10.1016/j.jplph.2015.03.014 Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130(2):784–795. https://doi.org/10.1104/pp.007781 Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141. https://doi.org/10.1093/nar/gkh121 Brauer EK, Ahsan N, Dale R, Kato N, Coluccio AE, Piñeros MA, Kochian LV, Thelen JJ, Popescu SC (2016) The raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiol 171(2):1470–1484. https://doi.org/10.1104/pp.16.00035 Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools–an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. https://doi.org/10.1016/j.molp.2020.06.009 Chen G, Hu J, Lian J, Zhang Y, Zhu L, Zeng DL, Guo LB, Yu L, Xu GH, Qian Q (2019) Functional characterization of OsHAK1 promoter in response to osmotic/drought stress by deletion analysis in transgenic rice. Plant Growth Regul 88(3):241–251. https://doi.org/10.1007/s10725-019-00504-3 Chen G, Zhang Y, Ruan BP, Guo LB, Zeng DL, Gao ZY, Zhu L, Hu J, Ren DY, Yu L, Xu GH, Qian Q (2018) OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism. Plant Sci 274:261–270. https://doi.org/10.1016/j.plantsci.2018.05.034 Chen XG, Shi CY, Li HM, Zhang AJ, Shi XM, Tang ZH, Wei M (2013) Effects of potassium fertilization period on photosynthetic characteristics and storage root starch accumulation of edible sweetpotato. J Appl Ecol 24(3):759–763 Cheng X, Liu X, Mao W, Zhang X, Chen S, Zhan K, Bi H, Xu H (2018a) Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L). Int J Mol Sci. https://doi.org/10.3390/ijms19123969 Cheng XY, Liu XD, Mao WW, Zhang XR, Chen SL, Zhan KH, Bi HH, Xu HX (2018b) Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). Int J Mol Sci. https://doi.org/10.3390/ijms19123969 Clark JW, Donoghue PCJ (2017) Constraining the timing of whole genome duplication in plant evolutionary history. Proc Biol Sci. https://doi.org/10.1098/rspb.2017.0912 Eddy SR (2011) Accelerated Profile HMM Searches. Plos Comput Biol. https://doi.org/10.1371/journal.pcbi.1002195 Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14(1):119–131. https://doi.org/10.1105/tpc.010322 Feng JY, Li M, Zhao S, Zhang C, Yang ST, Qiao S, Tan WF, Qu HJ, Wang DY, Pu ZG (2018) Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq. BMC Plant Biol 18(1):181. https://doi.org/10.1186/s12870-018-1399-x Feng X, Liu W, Qiu CW, Zeng F, Wang Y, Zhang G, Chen ZH, Wu F (2020) HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J 18(8):1683–1696. https://doi.org/10.1111/pbi.13332 Feng X, Wang Y, Zhang N, Wu Z, Zeng Q, Wu J, Wu X, Wang L, Zhang J, Qi Y (2020) Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+ stress in Saccharum. BMC Plant Biol 20(1):20. https://doi.org/10.1186/s12870-019-2227-7 Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73. https://doi.org/10.1105/tpc.10.1.63 Fulgenzi FR, Peralta ML, Mangano S, Danna CH, Vallejo AJ, Puigdomenech P, Santa-María GE (2008) The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition. Plant Physiol 147:252–262. https://doi.org/10.1104/pp.107.114546 Gierth M, Maser P (2007) Potassium transporters in plants—Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356. https://doi.org/10.1016/j.febslet.2007.03.035 Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3):1105–1114. https://doi.org/10.1104/pp.104.057216 Gomez-Porras JL, Riano-Pachon DM, Benito B, Haro R, Sklodowski K, Rodriguez-Navarro A, Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167. https://doi.org/10.3389/fpls.2012.00167 Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot 99(6):1035–1041. https://doi.org/10.1093/aob/mcm066 Gupta M, Qiu XH, Wang L, Xie WB, Zhang CJ, Xiong LZ, Lian XM, Zhang QF (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genom 280(5):437–452. https://doi.org/10.1007/s00438-008-0377-7 Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder J, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 32:113–120. https://doi.org/10.1016/j.copbio.2014.11.025 Han M, Wu W, Wu WH, Wang Y (2016) Potassium Transporter KUP7 Is Involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant 9(3):437–446. https://doi.org/10.1016/j.molp.2016.01.012 He CY, Cui K, Duan AG, Zeng YF, Zhang JG (2012) Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2(8):1996–2004. https://doi.org/10.1002/ece3.299 Hedrich R (2012) Ion channels in plants. Physiol Rev 92(4):1777–1811. https://doi.org/10.1152/physrev.00038.2011 Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R (2013) Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol 54(9):1478–1490. https://doi.org/10.1093/pcp/pct094 Horie T, Hauser F, Schroeder J (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668. https://doi.org/10.1016/j.tplants.2009.08.009 Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111(3):346–356. https://doi.org/10.1016/j.jbiosc.2010.10.014 Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z, Bie Z, Shabala S (2019) Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. J Exp Bot 70(20):5879–5893. https://doi.org/10.1093/jxb/erz328 Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100. https://doi.org/10.1038/nature09916 Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10(1):51–62. https://doi.org/10.1105/tpc.10.1.51 Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, arabis, and related Genera (Brassicaceae). Mol Biol Evol 17(10):1483–1498. https://doi.org/10.1093/oxfordjournals.molbev.a026248 Kobayashi D, Uozumi N, Hisamatsu S, Yamagami M (2010) AtKUP/HAK/KT 9, a K+ transporter from Arabidopsis thaliana, mediates Cs+ uptake in escherichia coli. J Agric Chem Soc Japan 74(1):203–205. https://doi.org/10.1271/bbb.90638 Lara A, Ródenas R, Andrés Z, Martínez V, Quintero FJ, Nieves-Cordones M, Botella MA, Rubio F (2020) AtHAK5-mediated root high-affinity K+ uptake is regulated by the protein kinases AtCIPK1 and AtCIPK9. J Exp Bot. https://doi.org/10.1093/jxb/eraa212 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404 Li W, Xu G, Alli A, Yu L (2018) Plant HAK/KUP/KT K+ transporters: Function and regulation. Semin Cell Dev Biol 74:133–141. https://doi.org/10.1016/j.semcdb.2017.07.009 Liang M, Gao YC, Mao TT, Zhang X, Song ZZ (2020) Characterization and expression of KT/HAK/KUP transporter family genes in willow under potassium deficiency, drought, and salt stresses. Bio Med Res Int 2020(6):1–12. https://doi.org/10.1155/2020/2690760 Liu M, Zhang A, Chen X, Jin R, Li HM, Tang ZH (2017) The effect of potassium deficiency on growth and physiology in sweetpotato [Ipomoea batatas (L.) Lam] during Early Growth. HortScience 52(7):1020–1028 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262 Mangano S, Silberstein S, Santa-Marıa GE (2008) Point mutations in the barley HvHAK1 potassium transporter lead to improved K+ -nutrition and enhanced resistance to salt stress. FEBS Lett 582:3922–3928. https://doi.org/10.1016/j.febslet.2008.10.036 Maser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247(1):43–54. https://doi.org/10.1023/a:1021159130729 Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667. https://doi.org/10.1104/pp.126.4.1646 Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol Plant 3(2):326–333 Nieves-Cordones M, Rodenas R, Chavanieu A, Rivero RM, Martinez V, Gaillard I, Rubio F (2016) Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00127 Okada T, Yamane S, Yamaguchi M, Kato K, Shinmyo A, Tsunemitsu Y, Iwasaki K, Ueno D, Demura T (2018) Characterization of rice KT/HAK/KUP potassium transporters and K+ uptake by HAK1 from Oryza sativa. Plant Biotechnol 35(2):101–111. https://doi.org/10.5511/plantbiotechnology.18.0308a Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25(2):609–624. https://doi.org/10.1105/tpc.112.105700 Ou W, Mao X, Huang C, Tie W, Yan Y, Ding Z, Wu C, Xia Z, Wang W, Zhou S, Li K, Hu W (2018) Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculenta Crantz). Front Physiol 9:17. https://doi.org/10.3389/fphys.2018.00017 Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(D1):D290–D301. https://doi.org/10.1093/nar/gkr1065 Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153(2):863–875. https://doi.org/10.1104/pp.110.154369 Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59(3):595–607. https://doi.org/10.1093/jxb/erm330 Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F (2015) The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis Roots. Plant Physiol 169(4):2863–2873. https://doi.org/10.1104/pp.15.01401 Rajappa S, Krishnamurthy P, Kumar PP (2020) Regulation of AtHUP2 expression by bH1H and WRKY transcription factors helps to confer increased salt tolerance to arabidopsis thaliana plants. Front Plant Ence. https://doi.org/10.3389/fpls.2020.01311 Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P (2013) Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol 197(4):1130–1141. https://doi.org/10.1111/nph.12092 Santa-María GE, Rubio F, Dubcovsky J, Rodríguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9(12):2281–2289. https://doi.org/10.1105/tpc.9.12.2281 Santa-Maria GE (2000) High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways. Plant Physiol 123(1):297–306. https://doi.org/10.1104/pp.123.1.297 Senn ME, Rubio F, Bañuelos MA, Rodrı́guez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569. https://doi.org/10.1074/jbc.M108129200 Shen Y, Shen LK, Shen ZX, Jing W, Ge HL, Zhao JZ, Zhang WH (2015) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38(12):2766–2779. https://doi.org/10.1111/pce.12586 Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165. https://doi.org/10.1016/j.pbi.2016.03.015 Song ZB, Wu XF, Gao YL, Cui X, Jiao FC, Chen XJ, Li YP (2019) Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco (Nicotiana tabacum). Genome 62(4):267–278. https://doi.org/10.1139/gen-2018-0187 Stewart WM, Dibb DW, Johnston AE, Smyth TJ (2005) The contribution of commercial fertilizer nutrients to food production. Agron J 97(1):1–6. https://doi.org/10.2134/agronj2005.0001 Sun Y, Buhler J (2007) Designing patterns for profile HMM search. Bioinformatics 23(2):E36–E43. https://doi.org/10.1093/bioinformatics/btl323 Sun YL, Mu CH, Zheng HX, Lu SP, Zhang H, Zhang XC, Liu X (2018) Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Sci Rep. https://doi.org/10.1038/s41598-018-34320-y Sustr M, Soukup A, Tylova E (2019) Potassium in root growth and development. Plants (Basel, Switzerland). https://doi.org/10.3390/plants8100435 Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166(5):447–466. https://doi.org/10.1016/j.jplph.2008.12.009 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121 Tang ZH, Zhang YG, Wei M, Chen XG, Shi XM, Zhang AJ, Ding YF (2014) Screening and evaluation indicators for low potassium-tolerant and potassium efficient sweetpotato (Ipomoea batatas L.) Varieties (Lines). Acta Agronomica Sinica 40(3):542–549 Very AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? J Plant Physiol 171(9):748–769. https://doi.org/10.1016/j.jplph.2014.01.011 Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603. https://doi.org/10.1146/annurev.plant.54.031902.134831 Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J Cell Mol Biol 40(4):523–535. https://doi.org/10.1111/j.1365-313X.2004.02230.x Wu S, Lau KH, Cao QH, Hamilton JP, Sun H, Zhou C, Eserman L, Gemenet DC, Olukolu BA, Wang HY, Crisovan E, Godden GT, Jiao C, Wang X, Kitavi M, Manrique-Carpintero N, Vaillancourt B, Wiegert-Rininger K, Yang XS, Bao K, Schaff J, Kreuze J, Gruneberg W, Khan A, Ghislain M, Ma DF, Jiang JM, Mwanga ROM, Leebens-Mack J, Coin LJM, Yencho GC, Buell CR, Fei ZJ (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvemen. Nat Commun 9(1):1–12. https://doi.org/10.1038/s41467-018-06983-8 Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W, Deng G, Wang H, Hu F, Zhao S, Fernie AR, Boerno S, Timmermann B, Zhang P, Vingron M (2017) Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat plants 3(9):696–703. https://doi.org/10.1038/s41477-017-0002-z Yang TY, Zhang S, Hu YB, Wu FC, Hu QD, Chen G, Cai J, Wu T, Moran N, Yu L, Xu GH (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166(2):945-U757. https://doi.org/10.1104/pp.114.246520 Zhang M, Liang XY, Wang LM, Cao YB, Song WB, Shi JP, Lai JS, Jiang CF (2019) A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants 5(12):1297. https://doi.org/10.1038/s41477-019-0565-y