Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines

Nature - Tập 465 Số 7298 - Trang 627-631 - 2010
Susanna Atwell1, Yu Huang1, Bjarni J. Vilhjálmsson1, G. Willems1, Matthew Horton2, Yan Li2, Alexander Platt1, Aaron M. Tarone1, Tina T. Hu1, Rong Jiang1, Ni Wayan Muliyati2, Xu Zhang2, Muhammad Ali Amer1, Ivan Baxter3, Benjamin Brachi4, Joanne Chory5, Caroline Dean6, Marilyne Debieu7, Juliette de Meaux7, Joseph R. Ecker8, Nathalie Faure4, Joel M. Kniskern2, Jonathan D. G. Jones9, Todd P. Michael8, Adnane Nemri9, Fabrice Roux4, David E. Salt10, Chunlao Tang1, Marco Todesco11, M. Brian Traw2, Detlef Weigel11, Paul Marjoram12, Justin Borevitz2, Joy Bergelson2, Magnus Nordborg13
1Molecular and Computational Biology,,
2Department of Ecology & Evolution, University of Chicago, Chicago, Illinois 60637, USA,
3Bindley Bioscience Center
4Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille 1, F-59655 Villeneuve d’Ascq Cedex, France
5Howard Hughes Medical Institute, La Jolla, California 92037, USA
6Department of Cell and Development Biology, John Innes Centre, Norwich NR4 7UH, UK
7Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
8Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
9Sainsbury Laboratory, Norwich NR4 7UH, UK
10Purdue University, West Lafayette, Indiana 47907, USA
11Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
12Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA,
13Gregor Mendel Institute, A-1030 Vienna, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005)

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)

Koornneef, M., Alonso-Blanco, C. & Vreugdenhil, D. Naturally occurring genetic variation in Arabidopsis thaliana . Annu. Rev. Plant Biol. 55, 141–172 (2004)

Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana . PLoS Biol. 3, e196 (2005)

Shindo, C. et al. Role of FRIGIDA and FLC in determining variation in flowering time of Arabidopsis thaliana . Plant Physiol. 138, 1163–1173 (2005)

Kim, S. et al. Recombination and linkage disequilibrium in Arabidopsis thaliana . Nature Genet. 39, 1151–1155 (2007)

Nordborg, M. et al. The extent of linkage disequilibrium in Arabidopsis thaliana . Nature Genet. 30, 190–193 (2002)

Aranzana, M. J. et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 1, e60 (2005)

Zhao, K. et al. An Arabidopsis example of association mapping in structured samples. PLoS Genet. 3, e4 (2007)

Pritchard, J. K., Stephens, M., Rosenberg, N. A. & Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181 (2000)

Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet. 38, 904–909 (2006)

Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2005)

Kang, H. M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008)

Grant, M. R. et al. Structure of the Arabidopsis RPM1 gene enabling dual-specificity disease resistance. Science 269, 843–846 (1995)

Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000)

Toomajian, C. et al. A non-parametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol. 4, e137 (2006)

Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999)

Bentsink, L., Jowett, J., Hanhart, C. J. & Koornneef, M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis . Proc. Natl Acad. Sci. USA 103, 17042–17047 (2006)

Rus, A. et al. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis . PLoS Genet. 2, e210 (2006)

Baxter, I. et al. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet. 4, e1000004 (2008)

Hilscher, J., Schlötterer, C. & Hauser, M.-T. A single amino acid replacement in ETC2 acts as major modifier of trichome patterning in natural Arabidopsis populations. Curr. Biol. 19, 1747–1751 (2009)

Lu, H., Rate, D. N., Song, J. T. & Greenberg, J. T. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15, 2408–2420 (2003)

Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009)

Han, J. et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 4, e1000074 (2008)

Stokowski, R. P. et al. A genomewide association study of skin pigmentation in a South Asian population. Am. J. Hum. Genet. 81, 1119–1132 (2007)

Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999)

Rosenberg, N. A. & Nordborg, M. A general population-genetic model for the production by population structure of spurious genotype-phenotype associations in discrete, admixed, or spatially distributed populations. Genetics 173, 1665–1678 (2006)

Nordborg, M. & Weigel, D. Next-generation genetics in plants. Nature 456, 720–723 (2008)