Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation

Cell Reports - Tập 9 Số 5 - Trang 1966-1980 - 2014
Jakub Orzechowski Westholm1, Pedro Miura2,1, Sara Olson3, Sol Shenker1,4, Brian Joseph1,5, Piero Sanfilippo1,5, S Celniker6, Jacques Ravel3, Eric C. Lai1
1Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA
2Department of Biology, University of Nevada, Reno, Nevada 89557 USA
3Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
4Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10065, USA
5Gerstner Sloan-Kettering Graduate Program of Biomedical Sciences, 417 East 68th Street, New York, NY 10065, USA
6Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94701, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Balool, 2011, Post-transcriptional exon shuffling events in humans can be evolutionarily conserved and abundant, Genome Res., 21, 1788, 10.1101/gr.116442.110

Ashburner, 2000, Gene ontology: tool for the unification of biology, Nat. Genet., 25, 25, 10.1038/75556

Ashwal-Fluss, 2014, circRNA Biogenesis Competes with Pre-mRNA Splicing, Mol. Cell, 56, 55, 10.1016/j.molcel.2014.08.019

Berezikov, 2011, Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence, Genome Res., 21, 203, 10.1101/gr.116657.110

Brown, 2014, Diversity and dynamics of the Drosophila transcriptome, Nature, 512, 393, 10.1038/nature12962

Calarco, 2009, Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein, Cell, 138, 898, 10.1016/j.cell.2009.06.012

Capel, 1993, Circular transcripts of the testis-determining gene Sry in adult mouse testis, Cell, 73, 1019, 10.1016/0092-8674(93)90279-Y

Chintapalli, 2007, Using FlyAtlas to identify better Drosophila melanogaster models of human disease, Nat. Genet., 39, 715, 10.1038/ng2049

Cocquerelle, 1993, Mis-splicing yields circular RNA molecules, FASEB journal, 7, 155, 10.1096/fasebj.7.1.7678559

Danan, 2012, Transcriptome-wide discovery of circular RNAs in Archaea, Nucleic Acids Res., 40, 3131, 10.1093/nar/gkr1009

Dobin, 2013, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15, 10.1093/bioinformatics/bts635

Grabowski, 1981, The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena, Cell, 23, 467, 10.1016/0092-8674(81)90142-2

Graveley, 2011, The developmental transcriptome of Drosophila melanogaster, Nature, 471, 473, 10.1038/nature09715

Grimson, 2007, MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol. Cell, 27, 91, 10.1016/j.molcel.2007.06.017

Gu, 2009, Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs, Nat. Struct. Mol. Biol., 16, 144, 10.1038/nsmb.1552

Guo, 2014, Expanded identification and characterization of mammalian circular RNAs, Genome Biol., 15, 409, 10.1186/s13059-014-0409-z

Hansen, 2013, Natural RNA circles function as efficient microRNA sponges, Nature, 495, 384, 10.1038/nature11993

Hilgers, 2011, Neural-specific elongation of 3′ UTRs during Drosophila development, Proc. Natl. Acad. Sci. USA, 108, 15864, 10.1073/pnas.1112672108

Houseley, 2006, Noncanonical RNAs from transcripts of the Drosophila muscleblind gene, J. Hered., 97, 253, 10.1093/jhered/esj037

Jeck, 2014, Detecting and characterizing circular RNAs, Nat. Biotechnol., 32, 453, 10.1038/nbt.2890

Jeck, 2013, Circular RNAs are abundant, conserved, and associated with ALU repeats, RNA, 19, 141, 10.1261/rna.035667.112

Lim, 2001, A computational analysis of sequence features involved in recognition of short introns, Proc. Natl. Acad. Sci. USA, 98, 11193, 10.1073/pnas.201407298

McManus, 2010, Global analysis of trans-splicing in Drosophila, Proc. Natl. Acad. Sci. USA, 107, 12975, 10.1073/pnas.1007586107

Memczak, 2013, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, 495, 333, 10.1038/nature11928

Miura, 2013, Widespread and extensive lengthening of 3′ UTRs in the mammalian brain, Genome Res., 23, 812, 10.1101/gr.146886.112

Nigro, 1991, Scrambled exons, Cell, 64, 607, 10.1016/0092-8674(91)90244-S

Okamura, 2008, The regulatory activity of microRNA∗ species has substantial influence on microRNA and 3′ UTR evolution, Nat. Struct. Mol. Biol., 15, 354, 10.1038/nsmb.1409

Roy, 2010, Identification of functional elements and regulatory circuits by Drosophila modENCODE, Science, 330, 1787, 10.1126/science.1198374

Ruby, 2007, Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs, Genome Res., 17, 1850, 10.1101/gr.6597907

Salzman, 2012, Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types, PLoS ONE, 7, e30733, 10.1371/journal.pone.0030733

Salzman, 2013, Cell-type specific features of circular RNA expression, PLoS Genet., 9, e1003777, 10.1371/journal.pgen.1003777

Sanger, 1976, Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Natl. Acad. Sci. USA, 73, 3852, 10.1073/pnas.73.11.3852

Schnall-Levin, 2010, Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3’UTRs, Proc. Natl. Acad. Sci. USA, 107, 15751, 10.1073/pnas.1006172107

Smibert, 2012, Global patterns of tissue-specific alternative polyadenylation in Drosophila, Cell Reports, 1, 277, 10.1016/j.celrep.2012.01.001

Wen, 2014, Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines, Genome Res., 24, 1236, 10.1101/gr.161554.113

Zhang, 2014, Complementary sequence-mediated exon circularization, Cell, 159, 134, 10.1016/j.cell.2014.09.001