Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amemiya, 2004, A white paper for sequencing the genome of a living fossil: the coelacanth,Latimeria chalumnae, Genome Res., 14, 1
Amemiya, 2010, Complete Hox cluster characterization of the coelacanth provides further evidence for slow evolution of its genome, Proc. Natl. Acad. Sci. U. S. A., 107, 3622, 10.1073/pnas.0914312107
Benton, 2000, 452
Bernardi, 1993, Genome organization and species formation in vertebrates, J. Mol. Evol., 37, 331, 10.1007/BF00178863
Bernardi, 2005, Structural and Evolutionary Genomics. Natural Selection in Genome Evolution, 434
Brainerd, 2001, Patterns of genome size evolution in tetraodontiform fishes, Evolution, 55, 2363, 10.1111/j.0014-3820.2001.tb00750.x
Carroll, 1988
Cavalier-Smith, 1985
Cimino, 1974, The nuclear DNA content and chromatin ultrastructure of the coelacanth, Exp. Cell Res., 88, 263, 10.1016/0014-4827(74)90240-7
Collares-Pereira, 1999, Intraspecific and interspecific genome size variation in Iberian Cyprinidae and the problem of diploidy and polyploidy, with review of genome sizes within the family, Folia Zool., 48, 61
Danke, 2004, Genome resources for the Indonesian coelacanth Latimeria menadoensis, J. Exp. Zool., 301A, 228, 10.1002/jez.a.20024
Forey, 1998
Forey, 1988, Golden jubilee for the coelacanth Latimeria chalumnae, Nature, 336, 727, 10.1038/336727a0
Fricke, 1991, Habitat and population size of the coelacanth Latimeria chalumnae at Grand Comoro, Env. Biol. Fishes, 32, 287, 10.1007/BF00007462
Fricke, 2000, Feeding ecology and evolutionary survival of the living coelacanth Latimeria chalumnae, Marine Biol., 136, 379, 10.1007/s002270050697
Gregory, 2005
Gregory, T.R., 2010. Animal genome size database, http://www.genomesize.com.
Inoue, 2005, The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths, Gene, 349, 227, 10.1016/j.gene.2005.01.008
Jabbari, 1997, Evolutionary changes in CpG and methylation levels in the genome of vertebrates, Gene, 205, 109, 10.1016/S0378-1119(97)00475-7
Kafiani, 1958, Phosphorus metabolism in the embryonic development of sturgeon, Biochemistry, 23, 389
Lang, 2010, Conservation of shh cis-regulatory architecture of the coelacanth is consistent with its ancestral phylogenetic position, EvoDevo, 1, 11, 10.1186/2041-9139-1-11
Noonan, 2004, Coelacanth genome sequence reveals the evolutionary history of vertebrate genes, Genome Res., 14, 2397, 10.1101/gr.2972804
Olmo, 1983, Nucleotype and cell size in vertebrates: a review, Bas. Appl. Histochem., 27, 227
Olmo, 2006, Genome size and evolutionary diversification in vertebrates, Ital. J. Zool., 73, 167, 10.1080/11250000600680031
Olmo, 1989, Genome size evolution in vertebrates: trends and constraints, Comp. Biochem. Physiol., 92B, 447
Pujiana, 2009, Intraseasonal variability in the Makassar thermocline, J. Mar. Res., 67, 757, 10.1357/002224009792006115
Russell, 1977, Similarity of the general designs of protochordates and invertebrates, Nature, 266, 533, 10.1038/266533a0
Sambrook, 1989
Szarsky, 1983, Cell size and the concept of wasteful and frugal evolutionary strategies, J. Theor. Biol., 105, 201, 10.1016/S0022-5193(83)80002-2
Thomson, 1978, Estimation of cell size and DNA content in fossil fishes and amphibians, J. Exp. Zool., 205, 315, 10.1002/jez.1402050216
Uliano, 2010, Metabolic rate and genomic GC. What we can learn from teleost fish, Mar. Genom., 3, 29, 10.1016/j.margen.2010.02.001
Uyeno, 2007, 24
Varriale, 2006, DNA methylation and body temperature in fishes, Gene, 385, 111, 10.1016/j.gene.2006.05.031
Vialli, 1957, La quantità di acido desossiribonucleico per nucleo negli eritrociti di Latimeria, Rend. Ist. Lomb. Sci. Lett. Sez, B91, 680