Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model
Tài liệu tham khảo
Aguileta, 2009, Rapidly evolving genes in pathogens: Methods for detecting positive selection and examples among fungi, bacteria, viruses and protists, Infectection, Genetics, and Evolution, 9, 656, 10.1016/j.meegid.2009.03.010
Akagi, 2009, Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus, Eukaryot. Cell, 8, 1732, 10.1128/EC.00135-09
Batada, 2007, Evolution of chromosome organization driven by selection for reduced gene expression noise, Nat. Genet., 39, 945, 10.1038/ng2071
Bennetzen, 2014, The contributions of transposable elements to the structure, function, and evolution of plant genomes, Annu. Rev. Plant Biol., 65, 505, 10.1146/annurev-arplant-050213-035811
Brown, 2010, Rapid expansion and functional divergence of subtelomeric gene families in yeasts, Curr. Biol., 20, 895, 10.1016/j.cub.2010.04.027
Carr, 2012, Evolutionary genomics of transposable elements in Saccharomyces cerevisiae, PloS One, 7, 10.1371/journal.pone.0050978
Chujo, 2019, Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis, Fungal Genet. Biol., 125, 71, 10.1016/j.fgb.2019.02.001
Chujo, 2014, Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis, Mol. Microbiol., 92, 413, 10.1111/mmi.12567
Chuong, 2016, Regulatory evolution of innate immunity through co-option of endogenous retroviruses, Science, 351, 1083, 10.1126/science.aad5497
Collemare, 2019, Nonproteinaceous effectors: The terra incognita of plant-fungal interactions, New Phytol., 223, 590, 10.1111/nph.15785
Collemare, 2019, Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete?, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev., 43, 591
Connolly, 2013, The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters, PLoS Genet., 9, 10.1371/journal.pgen.1003916
Cook, 2020, Chromatin features define adaptive genomic regions in a fungal plant pathogen, bioRxiv, 2020
Cook, 2015, Understanding plant immunity as a surveillance system to detect invasion, Annu. Rev. Phytopathol., 53, 541, 10.1146/annurev-phyto-080614-120114
Croll, 2012, The accessory genome as a cradle for adaptive evolution in pathogens, PLoS Pathog., 8, 10.1371/journal.ppat.1002608
Crombach, 2007, Chromosome rearrangements and the evolution of genome structuring and adaptability, Mol. Biol. Evol., 24, 1130, 10.1093/molbev/msm033
Cuypers, 2012, Virtual genomes in flux: An interplay of neutrality and adaptability explains genome expansion and streamlining, Genome Biology and Evolution, 4, 212, 10.1093/gbe/evr141
de Jonge, 2013, Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen, Genome Res., 23, 1271, 10.1101/gr.152660.112
de Jonge, 2012, Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing, Proc. Natl. Acad. Sci. U.S.A., 109, 5110, 10.1073/pnas.1119623109
Depotter, 2019, Dynamic virulence-related regions of the plant pathogenic fungus Verticillium dahliae display enhanced sequence conservation, Mol. Ecol., 28, 3482, 10.1111/mec.15168
Devos, 2002, Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis, Genome Res., 12, 1075, 10.1101/gr.132102
Dixon, 2012, Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376, 10.1038/nature11082
Dong, 2015, The two-speed genomes of filamentous pathogens: Waltz with plants, Curr. Opin. Genet. Dev., 35, 57, 10.1016/j.gde.2015.09.001
Duchaud, 2003, The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens, Nat. Biotechnol., 21, 1307, 10.1038/nbt886
Dutheil, 2016, A tale of genome compartmentalization: The evolution of virulence clusters in smut fungi, Genome Biology and Evolution, 8, 681, 10.1093/gbe/evw026
Fablet, 2011, Evolvability, epigenetics and transposable elements, Biomol. Concepts, 2, 333, 10.1515/BMC.2011.035
Faino, 2016, Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen, Genome Res., 26, 1091, 10.1101/gr.204974.116
Feurtey, 2019, 864561
Fleetwood, 2011, Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses, Genome Biology and Evolution, 3, 1253, 10.1093/gbe/evr098
Fokkens, 2018, 465070
Fouché, 2020, Stress-driven transposable element de-repression dynamics and virulence evolution in a fungal pathogen, Mol. Biol. Evol., 37, 221, 10.1093/molbev/msz216
Frantzeskakis, 2018, Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen, BMC Genom., 19, 381, 10.1186/s12864-018-4750-6
Frantzeskakis, 2019, The need for speed: Compartmentalized genome evolution in filamentous phytopathogens, Mol. Plant Pathol., 20, 3, 10.1111/mpp.12738
Fudal, 2009, Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans, Mol. Plant Microbe Interact., 22, 932, 10.1094/MPMI-22-8-0932
Galagan, 2004, RIP: The evolutionary cost of genome defense, Trends Genet., 20, 417, 10.1016/j.tig.2004.07.007
Galazka, 2016, 203115
Gokcumen, 2011, Refinement of primate copy number variationhotspots identifies candidate genomic regions evolving under positive selection, Genome Biol., 12, R52, 10.1186/gb-2011-12-5-r52
Goodwin, 2011, Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis, PLoS Genet., 7, e1002070, 10.1371/journal.pgen.1002070
Grewal, 2007, Heterochromatin revisited, Nat. Rev. Genet., 8, 35, 10.1038/nrg2008
Haas, 2009, Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans, Nature, 461, 393, 10.1038/nature08358
Hartmann, 2017, A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements, ISME J., 11, 1189, 10.1038/ismej.2016.196
Hastings, 2009, Mechanisms of change in gene copy number, Nat. Rev. Genet., 10, 551, 10.1038/nrg2593
Heermann, 2008, Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: Uncovering candidate genes involved in insect pathogenicity, BMC Genom., 9, 40, 10.1186/1471-2164-9-40
Hocher, 2020, Subtelomeres as specialized chromatin domains, Bioessays, 42, 10.1002/bies.201900205
Hollister, 2009, Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression, Genome Res., 19, 1419, 10.1101/gr.091678.109
Hurst, 2004, The evolutionary dynamics of eukaryotic gene order, Nat. Rev. Genet., 5, 299, 10.1038/nrg1319
Janevska, 2018, Elucidation of the two H3K36me3 histone methyltransferases Set 2 and Ash 1 in Fusarium fujikuroi unravels their different chromosomal targets and a major impact of Ash1 on genome stability, Genetics, 208, 153, 10.1534/genetics.117.1119
Juárez-Reyes, 2019, Chromatin architecture and virulence-related gene expression in eukaryotic microbial pathogens, Curr. Genet., 65, 435, 10.1007/s00294-018-0903-z
Kawakatsu, 2016, Epigenomic diversity in a global collection of Arabidopsis thaliana accessions, Cell, 166, 492, 10.1016/j.cell.2016.06.044
Kema, 2018, Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance, Nat. Genet., 23, 678
Kidwell, 2001, Perspective: Transposable elements, parasitic DNA, and genome evolution, Evolution, 55, 1, 10.1111/j.0014-3820.2001.tb01268.x
Kombrink, 2017, Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts, Mol. Plant Pathol., 18, 596, 10.1111/mpp.12520
Laun, 2006, The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like loci, PLoS Genet., 2, e73, 10.1371/journal.pgen.0020073
Leister, 2004, Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene, Trends Genet., 20, 116, 10.1016/j.tig.2004.01.007
Liu, 2020
Lo Presti, 2015, Fungal effectors and plant susceptibility, Annu. Rev. Plant Biol., 66, 513, 10.1146/annurev-arplant-043014-114623
Lynch, 2007
Ma, 2010, Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium, Nature, 464, 367, 10.1038/nature08850
Makova, 2015, The effects of chromatin organization on variation in mutation rates in the genome, Nat. Rev. Genet., 16, 213, 10.1038/nrg3890
Mascher, 2017, A chromosome conformation capture ordered sequence of the barley genome, Nature, 544, 427, 10.1038/nature22043
Möller, 2019, Destabilization of chromosome structure by histone H3 lysine 27 methylation, PLoS Genet., 15, 10.1371/journal.pgen.1008093
Müller, 2019, A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew, New Phytol., 221, 2176, 10.1111/nph.15529
Muszewska, 2019, Transposable elements contribute to fungal genes and impact fungal lifestyle, Sci. Rep., 9, 4307, 10.1038/s41598-019-40965-0
Nottensteiner, 2018, A barley powdery mildew fungus non-autonomous retrotransposon encodes a peptide that supports penetration success on barley, J. Exp. Bot., 69, 3745, 10.1093/jxb/ery174
Oliver, 2009, Transposable elements: Powerful facilitators of evolution, Bioessays, 31, 703, 10.1002/bies.200800219
Omrane, 2017, Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici, mSphere, 2, 10.1128/mSphere.00393-17
Papkou, 2019, The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution, Proc. Natl. Acad. Sci. Unit. States Am., 116, 923, 10.1073/pnas.1810402116
Peter, 2018, Genome evolution across 1,011 Saccharomyces cerevisiae isolates, Nature, 556, 339, 10.1038/s41586-018-0030-5
Peter, 2016, Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum, Nat. Commun., 7, 12662, 10.1038/ncomms12662
Pfannenstiel, 2019, On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi, Biotechnol. Adv., 37, 107345, 10.1016/j.biotechadv.2019.02.001
Plissonneau, 2018, Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome, BMC Biol., 16, 5, 10.1186/s12915-017-0457-4
Plissonneau, 2016, The evolution of orphan regions in genomes of a fungal pathogen of wheat, mBio, 7, e01231, 10.1128/mBio.01231-16
Raffaele, 2010, Genome evolution following host jumps in the Irish potato famine pathogen lineage, Science, 330, 1540, 10.1126/science.1193070
Raffaele, 2012, Genome evolution in filamentous plant pathogens: why bigger can be better, Nat. Rev. Microbiol., 10, 417, 10.1038/nrmicro2790
Rebollo, 2011, Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms, PLoS Genet., 7, 10.1371/journal.pgen.1002301
Roach, 2005, The evolution of vertebrate Toll-like receptors, Proc. Natl. Acad. Sci. U.S.A., 102, 9577, 10.1073/pnas.0502272102
Rouxel, 2011, Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations, Nat. Commun., 2, 202, 10.1038/ncomms1189
Rovenich, 2014, Filamentous pathogen effector functions: of pathogens, hosts and microbiomes, Curr. Opin. Plant Biol., 20C, 96, 10.1016/j.pbi.2014.05.001
Sabelleck, 2018, Novel jack-in-the-box effector of the barley powdery mildew pathogen?, J. Exp. Bot., 69, 3511, 10.1093/jxb/ery192
Sánchez-Vallet, 2018, The genome biology of effector gene evolution in filamentous plant pathogens, Annu. Rev. Phytopathol., 56, 21, 10.1146/annurev-phyto-080516-035303
Sasaki, 2014, Heterochromatin controls γH2A localization in Neurospora crassa, Eukaryot. Cell, 13, 990, 10.1128/EC.00117-14
Schirawski, 2010, Pathogenicity determinants in smut fungi revealed by genome comparison, Science, 330, 1546, 10.1126/science.1195330
Schotanus, 2015, Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes, Epigenet. Chromatin, 8, 41, 10.1186/s13072-015-0033-5
Schrader, 2014, Transposable element islands facilitate adaptation to novel environments in an invasive species, Nat. Commun., 5, 10.1038/ncomms6495
Schrader, 2019, The impact of transposable elements in adaptive evolution, Mol. Ecol., 28, 1537, 10.1111/mec.14794
Schuster-Böckler, 2012, Chromatin organization is a major influence on regional mutation rates in human cancer cells, Nature, 488, 504, 10.1038/nature11273
Schwessinger, 2020, Distinct life histories impact dikaryotic genome evolution in the rust fungus Puccinia striiformis causing stripe rust in wheat, Genome Biology and Evolution, 12, 597, 10.1093/gbe/evaa071
Schwessinger, 2018, A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity, mBio, 9, 10.1128/mBio.02275-17
Seidl, 2016, Chromatin biology impacts adaptive evolution of filamentous plant pathogens, PLoS Pathog., 12, 10.1371/journal.ppat.1005920
Seidl, 2014, Sex or no sex: Evolutionary adaptation occurs regardless, Bioessays, 36, 335, 10.1002/bies.201300155
Seidl, 2017, Transposable elements direct the coevolution between plants and microbes, Trends Genet., 33, 842, 10.1016/j.tig.2017.07.003
Sentmanat, 2012, Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements, Proc. Natl. Acad. Sci. Unit. States Am., 109, 14104, 10.1073/pnas.1207036109
Slotkin, 2007, Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet., 8, 272, 10.1038/nrg2072
Snelders, 2018, Plant pathogen effector proteins as manipulators of host microbiomes?, Mol. Plant Pathol., 19, 257, 10.1111/mpp.12628
Soyer, 2014, Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans, PLoS Genet., 10, 10.1371/journal.pgen.1004227
Soyer, 2019, 544627
Stam, 2018, A new reference genome shows the one-speed genome structure of the barley pathogen Ramularia collo-cygni, Genome Biology and Evolution, 10, 3243, 10.1093/gbe/evy240
Strotz, 2018, Getting somewhere with the Red Queen: Chasing a biologically modern definition of the hypothesis, Biol. Lett., 14, 20170734, 10.1098/rsbl.2017.0734
Stuart, 2016, Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation, eLife, 5, 10.7554/eLife.20777
Sun, 2016, Preferential protection of genetic fidelity within open chromatin by the mismatch repair machinery, J. Biol. Chem., 291, 17692, 10.1074/jbc.M116.719971
Thon, 2006, The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae, Genome Biol., 7, R16, 10.1186/gb-2006-7-2-r16
van Dam, 2017, A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species, Sci. Rep., 7, 9042, 10.1038/s41598-017-07995-y
van de Vossenberg, 2019, The Synchytrium endobioticum AvrSen1 triggers a hypersensitive response in Sen 1 potatoes while natural variants evade detection, Mol. Plant Microbe Interact., 32, 1536, 10.1094/MPMI-05-19-0138-R
van de Vossenberg, 2019, Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum, Sci. Rep., 9, 8672, 10.1038/s41598-019-45128-9
van Wersch, 2019, Stronger when together: Clustering of plant NLR disease resistance genes, Trends Plant Sci., 24, 688, 10.1016/j.tplants.2019.05.005
Wang, 2014, Chromosome boundary elements and regulation of heterochromatin spreading, Cell. Mol. Life Sci., 71, 4841, 10.1007/s00018-014-1725-x
Wang, 2015, Rapid epigenetic adaptation to uncontrolled heterochromatin spreading, eLife, 4, 10.7554/eLife.06179
Wang, 2017, Characterization of the two-speed subgenomes of Fusarium graminearum reveals the fast-speed subgenome specialized for adaption and infection, Front. Plant Sci., 8, 140
Waterfield, 2002, Genomic islands in Photorhabdus, Trends Microbiol., 10, 541, 10.1016/S0966-842X(02)02463-0
Wicker, 2007, A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 8, 973, 10.1038/nrg2165
Winter, 2018, Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae, PLoS Genet., 14, 10.1371/journal.pgen.1007467
Wyka, 2020, Whole genome comparisons of ergot fungi reveals the divergence and evolution of species within the genus Claviceps are the result of varying mechanisms driving genome evolution and host range expansion, bioRxiv, 2020, 39230
Xia, 2018, Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei), BMC Genom., 19, 664, 10.1186/s12864-018-5041-y
Yasuhara, 2005, Evolution of heterochromatic genes of Drosophila, Proc. Natl. Acad. Sci. Unit. States Am., 102, 10958, 10.1073/pnas.0503424102
Yeaman, 2013, Genomic rearrangements and the evolution of clusters of locally adaptive loci, Proc. Natl. Acad. Sci. Unit. States Am., 110, E1743, 10.1073/pnas.1219381110
Yue, 2017, Contrasting evolutionary genome dynamics between domesticated and wild yeasts, Nat. Genet., 49, 913, 10.1038/ng.3847
Zhong, 2017, A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene, New Phytol., 214, 619, 10.1111/nph.14434