Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh bộ gen của các chủng Pichinde arenavirus có độc tính và không có độc tính
Tóm tắt
Một chủng virulent (P18) của virus Pichinde arenavirus gây ra một căn bệnh ở chuột lang tương tự như sốt Lassa ở người, trong khi một chủng avirulent (P2) của virus này được chứng minh là đã giảm độc tính ở các động vật nhiễm bệnh. Có giả thuyết rằng thành phần của bộ gen virus có thể ảnh hưởng đến mức độ độc tính trong một chủ thể nhiễm; tuy nhiên, trình tự đầy đủ của các bộ gen virus chưa được biết đến. Tại đây, chúng tôi cung cấp lần đầu tiên các trình tự bộ gen của các phân đoạn S và L cho cả hai chủng P2 và P18. So sánh trình tự xác định ba đột biến trong tiểu đơn vị GP1 của glycoprotein virus, một trong nucleoprotein NP, và năm trong protein polymerase RNA virus L. Những đột biến này, riêng lẻ hoặc kết hợp, có thể góp phần vào độc tính đã thu được của nhiễm virus Pichinde ở động vật. Ba thay đổi axit amin trong vùng biến đổi của tiểu đơn vị glycoprotein GP1 có thể ảnh hưởng đến việc xâm nhập của virus bằng cách thay đổi hoạt động gắn kết receptor của nó. Trong khi NP trước đây đã được chứng minh là điều chỉnh phản ứng miễn dịch của chủ thể đối với nhiễm virus, chúng tôi phát hiện rằng sự thay đổi R374 K trong protein này không ảnh hưởng đến chức năng của NP trong việc ức chế biểu hiện interferon-β. Bốn trong số năm thay đổi axit amin trong protein L xảy ra trong một vùng nhỏ của protein có thể góp phần vào độc tính của virus bằng cách tăng cường chức năng của nó trong tổng hợp RNA gen virus.
Từ khóa
#Pichinde arenavirus #virulent strain #avirulent strain #viral genome #glycoprotein #RNA polymeraseTài liệu tham khảo
Aronson JF, Herzog NK, Jerrells TR (1994) Pathological and virological features of arenavirus disease in guinea pigs. Comparison of two Pichinde virus strains. Am J Pathol 145:228–235
Aronson JF, Herzog NK, Jerrells TR (1995) Tumor necrosis factor and the pathogenesis of Pichinde virus infection in guinea pigs. Am J Trop Med Hyg 52:262–269
Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot MC, Deubel V (2004) Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 172:2861–2869
Beyer WR, Popplau D, Garten W, von Laer D, Lenz O (2003) Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77:2866–2872
Bowick GC, Fennewald SM, Elsom BL, Aronson JF, Luxon BA, Gorenstein DG, Herzog NK (2006) Differential signaling networks induced by mild and lethal hemorrhagic fever virus infections. J Virol 80:10248–10252
Bowick GC, Fennewald SM, Scott EP, Zhang L, Elsom BL, Aronson JF, Spratt HM, Luxon BA, Gorenstein DG, Herzog NK (2007) Identification of differentially activated cell-signaling networks associated with pichinde virus pathogenesis by using systems kinomics. J Virol 81:1923–1933
Buchmeier MJ, Bowen MD, Peters CJ (2001) Arenaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Lippincott-Raven, Philadelphia, pp 1635–1668
Connolly BM, Jenson AB, Peters CJ, Geyer SJ, Barth JF, McPherson RA (1993) Pathogenesis of Pichinde virus infection in strain 13 guinea pigs: an immunocytochemical, virologic, and clinical chemistry study. Am J Trop Med Hyg 49:10–24
Cornu TI, de la Torre JC (2001) RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J Virol 75:9415–9426
Cornu TI, de la Torre JC (2002) Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J Virol 76:6678–6688
Eichler R, Strecker T, Kolesnikova L, ter Meulen J, Weissenhorn W, Becker S, Klenk HD, Garten W, Lenz O (2004) Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res 100:249–255
Feldmann H, Volchkov VE, Volchkova VA, Klenk HD (1999) The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol Suppl 15:159–169
Feldmann H, Volchkov VE, Volchkova VA, Stroher U, Klenk HD (2001) Biosynthesis and role of filoviral glycoproteins. J Gen Virol 82:2839–2848
Fennewald SM, Aronson JF, Zhang L, Herzog NK (2002) Alterations in NF-kappaB and RBP-Jkappa by arenavirus infection of macrophages in vitro and in vivo. J Virol 76:1154–1162
Franze-Fernandez MT, Iapalucci S, Lopez N, Rossi C (1993) Subgenomic RNAs of Tacaribe virus. In: Salvato MS (ed) The arenaviridae. Plenum Press, New York, pp 113–132
Freed EO (2003) The HIV-TSG101 interface: recent advances in a budding field. Trends Microbiol 11:56–59
Garcia-Sastre A (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279:375–384
Garcin D, Rochat S, Kolakofsky D (1993) The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. J Virol 67:807–812
Glaser L, Stevens J, Zamarin D, Wilson IA, Garcia-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79:11533–11536
Gunther S, Lenz O (2004) Lassa virus. Crit Rev Clin Lab Sci 41:339–390
Hass M, Westerkofsky M, Muller S, Becker-Ziaja B, Busch C, Gunther S (2006) Mutational analysis of the lassa virus promoter. J Virol 80:12414–12419
Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842
Iapalucci S, Lopez N, Franze-Fernandez MT (1991) The 3′ end termini of the Tacaribe arenavirus subgenomic RNAs. Virology 182:269–278
Jacamo R, Lopez N, Wilda M, Franze-Fernandez MT (2003) Tacaribe virus Z protein interacts with the L polymerase protein to inhibit viral RNA synthesis. J Virol 77:10383–10393
Jahrling PB, Hesse RA, Rhoderick JB, Elwell MA, Moe JB (1981) Pathogenesis of a pichinde virus strain adapted to produce lethal infections in guinea pigs. Infect Immun 32:872–880
Johnson KM, McCormick JB, Webb PA, Smith ES, Elliott LH, King IJ (1987) Clinical virology of Lassa fever in hospitalized patients. J Infect Dis 155:456–464
Katz MA, Starr JF (1990) Pichinde virus infection in strain 13 guniea pigs reduces intestinal protein reflection coefficient with compensation. J Infect Dis 162:1304–1308
Kirk WE, Cash P, Peters CJ, Bishop DH (1980) Formation and characterization of an intertypic lymphocytic choriomeningitis recombinant virus. J Gen Virol 51:213–218
Lee KJ, Perez M, Pinschewer DD, de la Torre JC (2002) Identification of the lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA analogs into LCMV-like particles. J Virol 76:6393–6397
Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci USA 98:12701–12705
Lopez N, Jacamo R, Franze-Fernandez MT (2001) Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 75:12241–12251
Lopez N, Franze-Fernandez MT (2007) A single stem-loop structure in Tacaribe arenavirus intergenic region is essential for transcription termination but is not required for a correct initiation of transcription and replication. Virus Res 124:237–244
Lukashevich IS, Maryankova R, Vladyko AS, Nashkevich N, Koleda S, Djavani M, Horejsh D, Voitenok NN, Salvato MS (1999) Lassa and Mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-alpha gene expression. J Med Virol 59:552–560
Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B (2003) Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170:2797–2801
Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80:9192–9199
Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81:12696–12703
Matloubian M, Kolhekar SR, Somasundaram T, Ahmed R (1993) Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J Virol 67:7340–7349
McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES (1987) A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 155:437–444
Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 100:12978–12983
Perez M, de la Torre JC (2003) Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 77:1184–1194
Pinschewer DD, Perez M, de la Torre JC (2003) Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol 77:3882–3887
Pinschewer DD, Perez M, de la Torre JC (2005) Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J Virol 79:4519–4526
Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. Embo J 8:3867–3874
Riviere Y, Ahmed R, Southern PJ, Buchmeier MJ, Oldstone MB (1985) Genetic mapping of lymphocytic choriomeningitis virus pathogenicity: virulence in guinea pigs is associated with the L RNA segment. J Virol 55:704–709
Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC (1983) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304:76–78
Salvato M, Borrow P, Shimomaye E, Oldstone MB (1991) Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol 65:1863–1869
Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410
Strecker T, Eichler R, Meulen J, Weissenhorn W, Dieter Klenk H, Garten W, Lenz O (2003) Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol 77:10700–10705
Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ (2005) Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 79:10442–10450
Wilson SM, Clegg JC (1991) Sequence analysis of the S RNA of the African arenavirus Mopeia: an unusual secondary structure feature in the intergenic region. Virology 180:543–552
Zhang L, Marriott K, Aronson JF (1999) Sequence analysis of the small RNA segment of guinea pig-passaged Pichinde virus variants. Am J Trop Med Hyg 61:220–225
Zhang L, Marriott KA, Harnish DG, Aronson JF (2001) Reassortant analysis of guinea pig virulence of pichinde virus variants. Virology 290:30–38