Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Diener, 2003, Discovering viroids—A personal perspective, Nat. Rev. Microbiol., 1, 75, 10.1038/nrmicro736
Flores, 2004, Viroids: The minimal non-coding RNAs with autonomous replication, FEBS Lett., 567, 42
2004, A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA, J. Virol., 78, 10104, 10.1128/JVI.78.18.10104-10110.2004
Ding, 2010, Viroids: Self-replicating, mobile, and fast-evolving noncoding regulatory RNAs, Wiley Interdiscip. Rev. RNA, 1, 362, 10.1002/wrna.22
Pokorn, T., Radišek, S., Javornik, B., Štajner, N., and Jakše, J. (2017). Development of hop transcriptome to support research into host-viroid interactions. PLoS ONE, 12.
Gas, 2007, Processing of nuclear viroids in vivo: An interplay between RNA conformations, PLoS Pathog., 3, 1813, 10.1371/journal.ppat.0030182
Qi, 2003, Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA, Plant Cell, 15, 1360, 10.1105/tpc.011585
Voinnet, 2008, Use, tolerance and avoidance of amplified RNA silencing by plants, Trends Plant Sci., 13, 317, 10.1016/j.tplants.2008.05.004
Nagel, 2008, EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol, Plant Cell, 20, 186, 10.1105/tpc.107.055178
Zanoli, 2008, Pharmacognostic and pharmacological profile of Humulus lupulus L., J. Ethnopharmacol., 116, 383, 10.1016/j.jep.2008.01.011
Mishra, A.K., Duraisamy, G.S., Khare, M., Kocábek, T., Jakse, J., Bříza, J., Patzak, J., Sano, T., and Matoušek, J. (2018). Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genom., 19.
Cattoor, 2009, Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds, J. Nat. Prod., 72, 1220, 10.1021/np800740m
Martinez, 2010, High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem, Mol. Plant Pathol., 11, 347, 10.1111/j.1364-3703.2009.00608.x
Jakse, 2015, Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop, Plant Pathol., 64, 831, 10.1111/ppa.12325
Mishra, A.K., Duraisamy, G.S., Matoušekm, J., Radisek, S., Javornik, B., and Jakse, J. (2016). Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genom., 17.
Tessitori, 2007, Differential display analysis of gene expression in Etrog citron leaves infected by citrus viroid III, Biochim. Biophys. Acta, 1769, 228, 10.1016/j.bbaexp.2007.03.004
Rizza, 2012, Microarray analysis of etrog citron (Citrus medica L.) reveals changes in chloroplast, cell wall, peroxidase and symporter activities in response to viroid infection, Mol. Plant Pathol., 13, 852, 10.1111/j.1364-3703.2012.00794.x
Więsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., and Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10.
Marguerat, 2010, RNA-seq: From technology to biology, Cell. Mol. Life Sci., 67, 569, 10.1007/s00018-009-0180-6
Owens, 2012, Global analysis of tomato gene expression during potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling, Mol. Plant Microbe Interact., 25, 582, 10.1094/MPMI-09-11-0258
Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P.E., Bryan, G.J., Kalantidis, K., and Hornyik, C. (2016). Insight on genes affecting tuber development in potato upon potato spindle tuber viroid (PSTVd) infection. PLoS ONE, 11.
Herranz, 2013, A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid, Virol. J., 10, 164, 10.1186/1743-422X-10-164
Kappagantu, 2017, Hop stunt viroid: Effect on host (Humulus lupulus) transcriptome and its interactions with hop powdery mildew (Podospheara macularis), Mol. Plant Microbe Interact., 30, 842, 10.1094/MPMI-03-17-0071-R
Xia, 2017, Global Transcriptomic Changes Induced by Infection of Cucumber (Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid, Front Microbiol., 12, 2427, 10.3389/fmicb.2017.02427
Stehlik, 2012, Biological and molecular analysis of the pathogenic variant C3 of potato spindle tuber viroid (PSTVd) evolved during adaptation tochamomilla (Matricaria chamomilla), Biol. Chem., 393, 605, 10.1515/hsz-2011-0286
Steger, 2004, Biolistic inoculation of plants with viroid nucleic acids, J. Virol. Methods, 122, 153, 10.1016/j.jviromet.2004.08.011
Brass, 2017, Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.), J. Plant Physiol., 213, 166, 10.1016/j.jplph.2017.02.014
Junker, 1999, Molecular characterization and genome organization of 7SL RNA genes from hop (Humulus lupulus L.), Gene, 239, 173, 10.1016/S0378-1119(99)00352-2
Bustin, 2009, The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 55, 611, 10.1373/clinchem.2008.112797
Bolger, 2014, Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114, 10.1093/bioinformatics/btu170
Anders, 2010, Differential expression analysis for sequence count data, Genome Biol., 11, 106, 10.1186/gb-2010-11-10-r106
Haas, 2013, De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis, Nat. Protoc., 8, 1494, 10.1038/nprot.2013.084
Grabherr, 2011, Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol., 29, 644, 10.1038/nbt.1883
Love, 2014, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, 10.1186/s13059-014-0550-8
Benjamini, 1995, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 57, 289, 10.1111/j.2517-6161.1995.tb02031.x
Zhao, 2014, Advanced heat map and clustering analysis using heatmap3, Biomed. Res. Int., 2014, 986048, 10.1155/2014/986048
Conesa, 2008, Blast2GO: A comprehensive suite for functional analysis in plant genomics, Int. J. Plant Genom., 2008, 619832
Du, 2010, AgriGO: A GO analysis toolkit for the agricultural community, Nucleic Acids Res., 38, 64, 10.1093/nar/gkq310
Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. (2011). “REVIGO summarizes and visualizes long lists of Gene Ontology terms”. PLoS ONE, 6.
Thimm, 2004, MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes, Plant J., 37, 914, 10.1111/j.1365-313X.2004.02016.x
Zhu, M., Deng, X., Joshi, T., Xu, D., Stacey, G., and Cheng, J. (2012). Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells. BMC Genom., 13.
Li, 2003, OrthoMCL: Identification of ortholog groups for eukaryotic genomes, Genome Res., 13, 2178, 10.1101/gr.1224503
Xia, 2015, NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data, Nat. Protoc., 10, 823, 10.1038/nprot.2015.052
Schmittgen, 2008, Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 3, 1101, 10.1038/nprot.2008.73
Maloukh, 2009, Housekeeping gene selection for real time-PCR normalization in female hop (Humulus lupulus L.) tissues, J. Plant Biochem. Biotechnol., 18, 53, 10.1007/BF03263295
Xu, 2017, Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis, Front. Plant Sci., 8, 1205, 10.3389/fpls.2017.01205
Bedre, R., Mangu, V.R., Srivastava, S., Sanchez, L.E., and Baisakh, N. (2016). Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genom., 17.
Novaes, 2008, High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome, BMC Genom., 30, 312, 10.1186/1471-2164-9-312
Zhang, 2018, Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L.), Genomics, 110, 191, 10.1016/j.ygeno.2017.09.011
Xu, 2015, De novo and comparative transcriptome analysis of cultivated and wild spinach, Sci. Rep., 5, 17706, 10.1038/srep17706
Han, 2015, Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens, Biol. Pharm. Bull., 38, 876, 10.1248/bpb.b14-00834
Trapnell, 2010, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nat. Biotechnol., 28, 516, 10.1038/nbt.1621
Arena, 2016, Citrus leprosis virus C infection results in hypersensitive-like response, suppression of the JA/ET plant defense pathway and promotion of the colonization of its mite vector, Front. Plant Sci., 7, 1757, 10.3389/fpls.2016.01757
Camejo, 2016, Reactive Oxygen Species, essential molecules, during plant-pathogen interactions, Plant Physiol. Biochem., 103, 10, 10.1016/j.plaphy.2016.02.035
Aliferis, K.A., Faubert, D., and Jabaji, S. (2014). A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS ONE, 9.
Semancik, 2005, The question of Citrus viroid IV as a Cocadviroid, Arch. Virol., 150, 1059, 10.1007/s00705-005-0499-8
Spoel, 2012, How do plants achieve immunity? Defence without specialized immune cells, Nat. Rev. Immunol., 12, 89, 10.1038/nri3141
Cheng, 2013, Plant immune response to pathogens differs with changing temperatures, Nat. Commun., 4, 2530, 10.1038/ncomms3530
Ucci, 2007, Mechanism of interaction of the double-stranded RNA (dsRNA) binding domain of protein kinase R with short dsRNA sequences, Biochemistry, 46, 55, 10.1021/bi061531o
Bilgin, 2003, P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis, Dev. Cell, 4, 651, 10.1016/S1534-5807(03)00125-4
Bhattacharyya, 2018, Chloroplast: The Trojan horse in plant-virus interaction, Mol. Plant Pathol., 19, 504, 10.1111/mpp.12533
Nohales, 2012, Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae, J. Virol., 86, 8269, 10.1128/JVI.00629-12
Shu, 2016, Two faces of one seed: Hormonal regulation of dormancy and germination, Mol. Plant, 9, 34, 10.1016/j.molp.2015.08.010
Novak, 2017, Zooming in on plant hormone analysis: Tissue- and cell-specific approaches, Annu. Rev. Plant Biol., 68, 323, 10.1146/annurev-arplant-042916-040812
Collum, 2016, The impact of phytohormones on virus infection and disease, Curr. Opin. Virol., 17, 25, 10.1016/j.coviro.2015.11.003
Zheng, 2017, Comprehensive transcriptome analyses reveal that potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible trans-acting activity of phasiRNAs and immune responses, J. Virol., 91, e00247-17, 10.1128/JVI.00247-17
López-Gresa, M.P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., and Bellés, J.M. (2016). Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS ONE, 11.
Verchot, 2014, The ER quality control and ER associated degradation machineries are vital for viral pathogenesis, Front. Plant Sci., 5, 66, 10.3389/fpls.2014.00066
Verchot, J. (2016). Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum. Viruses, 8.
Sasvari, 2014, Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors, Front. Plant Sci., 5, 383, 10.3389/fpls.2014.00383
Navarro, 2012, Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing, Plant J., 70, 991, 10.1111/j.1365-313X.2012.04940.x
Alam, 2015, Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection, J. Virol., 90, 3302, 10.1128/JVI.02833-15
Hafren, 2010, HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions, Plant Cell, 22, 523, 10.1105/tpc.109.072413
Alves, 2014, Transcription factor functional protein-protein interactions in plant defense responses, Proteomes, 2, 85, 10.3390/proteomes2010085
Patzak, 2016, The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.), Plant Mol. Biol., 92, 263, 10.1007/s11103-016-0510-7
Rius, 2012, Flavonoids: Biosynthesis, biological functions, and biotechnological applications, Front Sci., 3, 222