Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akoh, 2004, GDSL family of serine esterases/lipases., Prog. Lipid Res., 43, 534, 10.1016/j.plipres.2004.09.002
An, 2019, ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize., Mol. Plant, 12, 343, 10.1016/j.molp.2019.01.011
Babenko, 2004, Prevalence of intron gain over intron loss in the evolution of paralogous gene families., Nucleic Acids Res., 32, 3724, 10.1093/nar/gkh686
Bailey, 2009, MEME SUITE: tools for motif discovery and searching., Nucleic Acids Res., 37, W202, 10.1093/nar/gkp335
Cao, 2018, Expansion and evolutionary patterns of GDSL-type esterases/lipases in Rosaceae genomes., Funct. Integr. Genomics, 18, 673, 10.1007/s10142-018-0620-1
Chen, 2018, TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface., bioRxiv, 10.1101/289660
Chepyshko, 2012, Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis., BMC Genomics, 13, 10.1186/1471-2164-13-309
Ding, , Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus., Plant Cell Rep., 38, 243, 10.1007/s00299-018-2365-7
Ding, , Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus., Plant Biotechnol. J., 18, 1255, 10.1111/pbi.13289
Dong, 2016, GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis., Mol. Genet. Genomics, 291, 531, 10.1007/s00438-015-1123-6
Du, 2018, Identification and characterization of GmMYB118 responses to drought and salt stress., BMC Plant Biol., 18, 10.1186/s12870-018-1551-7
Fan, 2019, Molecular evolution and lineage-specific expansion of the PP2C family in Zea mays., Planta, 250, 1521, 10.1007/s00425-019-03243-x
Fedorov, 2002, Large-scale comparison of intron positions among animal, plant, and fungal genes., Proc. Natl. Acad. Sci. U.S.A., 99, 16128, 10.1073/pnas.242624899
Finn, 2011, HMMER web server: interactive sequence similarity searching., Nucleic Acids Res., 39, W29, 10.1093/nar/gkr367
Ganko, 2007, Divergence in expression between duplicated genes in Arabidopsis., Mol. Biol. Evol., 24, 2298, 10.1093/molbev/msm158
Gao, 2017, GDSL lipases modulate immunity through lipid homeostasis in rice., PLoS Pathog., 13, 10.1371/journal.ppat.1006724
Goodstein, 2012, Phytozome: a comparative platform for green plant genomics., Nucleic Acids Res., 40, D1178, 10.1093/nar/gkr944
Hamel, 2006, Ancient signals: comparative genomics of plant MAPK and MAPKK gene families., Trends Plant Sci., 11, 192, 10.1016/j.tplants.2006.02.007
Holub, 2001, The arms race is ancient history in Arabidopsis, the wildflower., Nat. Rev. Genet., 2, 10.1038/35080508
Hong, 2008, Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance., Planta, 227, 539, 10.1007/s00425-007-0637-5
Hu, 2015, GSDS 2.0: an upgraded gene feature visualization server., Bioinformatics, 31, 1296, 10.1093/bioinformatics/btu817
Huang, 2015, Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance., Bot. Stud., 56, 10.1186/s40529-015-0114-6
Kereszt, 2007, Agrobacterium rhizogenes-mediated transformation of soybean to study root biology., Nat. Protoc., 2, 948, 10.1038/nprot.2007.141
Kim, 2014, GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis., FEBS Lett., 588, 1652, 10.1016/j.febslet.2014.02.062
Kim, 2013, GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling., Plant Physiol., 163, 1776, 10.1104/pp.113.225649
Kim, 2008, GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper., Biochem. Biophys. Res. Commun., 374, 693, 10.1016/j.bbrc.2008.07.120
Kwon, 2009, GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis., Plant J., 58, 235, 10.1111/j.1365-313X.2008.03772.x
Lai, 2017, Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis., Plant Mol. Biol., 95, 181, 10.1007/s11103-017-0648-y
Lee, 2009, Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling., Biochem. Biophys. Res. Commun., 379, 1038, 10.1016/j.bbrc.2009.01.006
Lee, 2013, PGDD: a database of gene and genome duplication in plants., Nucleic Acids Res., 41, D1152, 10.1093/nar/gks1104
Li, 2019, Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance., Front. Plant Sci., 10, 10.3389/fpls.2019.00549
Li, 2017, A GDSL-motif esterase/acyltransferase/lipase is responsible for leaf water retention in barley., Plant Direct., 1, 10.1002/pld3.25
Li, 2019, Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid saccharum spontaneum., Plant Cell Physiol., 61, 616, 10.1093/pcp/pcz227
Ling, 2006, Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L., J. Biochem. Mol. Biol., 39, 297, 10.5483/bmbrep.2006.39.3.297
Luo, 2018, Genome-wide identification, classification, and expression of phytocyanins in Populus trichocarpa., Planta, 247, 1133, 10.1007/s00425-018-2849-2
Lyons, 2008, How to usefully compare homologous plant genes and chromosomes as DNA sequences., Plant J., 53, 661, 10.1111/j.1365-313X.2007.03326.x
Ma, 2018, A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis., PLoS One, 13, 10.1371/journal.pone.0195556
Marchler-Bauer, 2015, CDD: NCBI’s conserved domain database., Nucleic Acids Res., 43, D222, 10.1093/nar/gku1221
Naranjo, 2006, Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants., Plant Cell Environ., 29, 1890, 10.1111/j.1365-3040.2006.01565.x
Rajarammohan, 2018, Genome-wide association mapping in Arabidopsis identifies novel genes underlying quantitative disease resistance to Alternaria brassicae., Mol. Plant Pathol., 19, 1719, 10.1111/mpp.12654
Rao, 2010, In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice., DNA Res., 17, 139, 10.1093/dnares/dsq011
Roy, 2007, Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana., Mol. Biol. Evol., 24, 171, 10.1093/molbev/msl159
Schlueter, 2007, Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing., BMC Genomics, 8, 10.1186/1471-2164-8-330
Schmutz, 2010, Genome sequence of the palaeopolyploid soybean., Nature, 463, 178, 10.1038/nature08670
Severin, 2010, RNA-seq atlas of glycine max: a guide to the soybean transcriptome., BMC Plant Biol., 10, 10.1186/1471-2229-10-160
Shi, 2018, The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean., Int. J. Mol. Sci., 19, 10.3390/ijms19124087
Smyth, 2017, Wrinkles on sepals: cuticular ridges form when cuticle production outpaces epidermal cell expansion., Mol. Plant, 10, 540, 10.1016/j.molp.2017.02.008
Su, 2019, Genome-wide analysis of the DYW subgroup PPR gene family and identification of GmPPR4 responses to drought stress., Int. J. Mol. Sci., 20, 10.3390/ijms20225667
Szekely, 2008, Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis., Plant J., 53, 11, 10.1111/j.1365-313X.2007.03318.x
Takahashi, 2010, Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana., Plant Cell Physiol., 51, 123, 10.1093/pcp/pcp173
Updegraff, 2009, The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen., Sex Plant Reprod., 22, 197, 10.1007/s00497-009-0104-5
Upton, 1995, A new family of lipolytic enzymes?, Trends Biochem. Sci., 20, 178, 10.1016/s0968-0004(00)89002-7
Volokita, 2011, Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants., Mol. Biol. Evol., 28, 551, 10.1093/molbev/msq226
Wang, 2016, Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.)., BMC Genomics, 17, 10.1186/s12864-016-2993-7
Watkins, 2019, A GDSL esterase/lipase catalyzes the esterification of lutein in bread wheat., Plant Cell, 31, 3092, 10.1105/tpc.19.00272
Xu, 2012, Divergence of duplicate genes in exon-intron structure., Proc. Natl. Acad. Sci. U.S.A., 109, 1187, 10.1073/pnas.1109047109
Yadav, 2017, GhMYB1 regulates SCW stage-specific expression of the GhGDSL promoter in the fibres of Gossypium hirsutum L., Plant Biotechnol. J., 15, 1163, 10.1111/pbi.12706
Zhang, 2017, Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase., Nat. Plants, 3, 10.1038/nplants.2017.17
Zhang, 2019, Arabinosyl deacetylase modulates the arabinoxylan acetylation profile and secondary wall formation., Plant Cell, 31, 1113, 10.1105/tpc.18.00894