Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis[W]

Plant Cell - Tập 15 Số 4 - Trang 809-834 - 2003
Blake C. Meyers1,2, Alexander Kozik2, Alyssa Griego2, Hanhui Kuang2, Richard W. Michelmore2
1Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711
2Department of Vegetable Crops, University of California, Davis, California, 95616

Tóm tắt

Abstract

The Arabidopsis genome contains ∼200 genes that encode proteins with similarity to the nucleotide binding site and other domains characteristic of plant resistance proteins. Through a reiterative process of sequence analysis and reannotation, we identified 149 NBS-LRR–encoding genes in the Arabidopsis (ecotype Columbia) genomic sequence. Fifty-six of these genes were corrected from earlier annotations. At least 12 are predicted to be pseudogenes. As described previously, two distinct groups of sequences were identified: those that encoded an N-terminal domain with Toll/Interleukin-1 Receptor homology (TIR-NBS-LRR, or TNL), and those that encoded an N-terminal coiled-coil motif (CC-NBS-LRR, or CNL). The encoded proteins are distinct from the 58 predicted adapter proteins in the previously described TIR-X, TIR-NBS, and CC-NBS groups. Classification based on protein domains, intron positions, sequence conservation, and genome distribution defined four subgroups of CNL proteins, eight subgroups of TNL proteins, and a pair of divergent NL proteins that lack a defined N-terminal motif. CNL proteins generally were encoded in single exons, although two subclasses were identified that contained introns in unique positions. TNL proteins were encoded in modular exons, with conserved intron positions separating distinct protein domains. Conserved motifs were identified in the LRRs of both CNL and TNL proteins. In contrast to CNL proteins, TNL proteins contained large and variable C-terminal domains. The extant distribution and diversity of the NBS-LRR sequences has been generated by extensive duplication and ectopic rearrangements that involved segmental duplications as well as microscale events. The observed diversity of these NBS-LRR proteins indicates the variety of recognition molecules available in an individual genotype to detect diverse biotic challenges.

Từ khóa


Tài liệu tham khảo

Aarts, M.G., te Lintel Hekkert, B., Holub, E.B., Beynon, J.L., Stiekema, W.J., and Pereira, A. (1998). Identification of R gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant-Microbe Interact.  11  ,  251–258.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res.  25  ,  3389–3402.

Anderson, P.A., Lawrence, G.J., Morrish, B.C., Ayliffe, M.A., Finnegan, E.J., and Ellis, J.G. (1997). Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell  9  ,  641–651.

Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature  408  ,  796–815.

Aravind, L., Dixit, V.M., and Koonin, E.V. (1999). The domains of death: Evolution of the apoptosis machinery. Trends Biochem. Sci.  24  ,  47–53.

Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D., and Parker, J.E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science  295  ,  2077–2080.

Bai, J., Pennill, L.A., Ning, J., Lee, S.W., Ramalingam, J., Webb, C.R., Zhao, B., Sun, Q., Nelson, J.C., Leach, J.E., and Hulbert, S.H. (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res.  12  ,  1871–1884.

Bailey, T.L., and Elkan, C. (1995). The value of prior knowledge in discovering motifs with MEME. Proc. Int. Conf. Intell. Syst. Mol. Biol.  3  ,  21–29.

Bailey, T.L., and Gribskov, M. (1998). Methods and statistics for combining motif match scores. J. Comput. Biol.  5  ,  211–221.

Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S.P. (1997). Signaling in plant-microbe interactions. Science  276  ,  726–733.

Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, E.L. (2002). The Pfam protein families database. Nucleic Acids Res.  30  ,  276–280.

Bendahmane, A., Farnham, G., Moffett, P., and Baulcombe, D.C. (2002). Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J.  32  ,  195–204.

Bent, A.F. (1996). Plant disease resistance genes: Function meets structure. Plant Cell  8  ,  1757–1771.

Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B.J. (1994). RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science  265  ,  1856–1860.

Botella, M.A., Parker, J.E., Frost, L.N., Bittner-Eddy, P.D., Beynon, J.L., Daniels, M.J., Holub, E.B., and Jones, J.D. (1998). Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell  10  ,  1847–1860.

Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase superfamily: Conserved structure and molecular mechanism. Nature  349  ,  117–127.

Burkhard, P., Stetefeld, J., and Strelkov, S.V. (2001). Coiled coils: A highly versatile protein folding motif. Trends Cell Biol.  11  ,  82–88.

Cannon, S.B., Zhu, H., Baumgarten, A.M., Spangler, R., May, G., Cook, D.R., and Young, N.D. (2002). Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J. Mol. Evol.  54  ,  548–562.

Chin, D.B., Arroyo-Garcia, R., Ochoa, O.E., Kesseli, R.V., Lavelle, D.O., and Michelmore, R.W. (2001). Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics  157  ,  831–849.

Collins, N.C., Webb, C.A., Seah, S., Ellis, J.G., Hulbert, S.H., and Pryor, A. (1998). The isolation and mapping of disease resistance gene analogs in maize. Mol. Plant-Microbe Interact.  11  ,  968–978.

Cooley, M.B., Pathirana, S., Wu, H.J., Kachroo, P., and Klessig, D.F. (2000). Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell  12  ,  663–676.

Dangl, J.L., Dietrich, R.A., and Richberg, M.H. (1996). Death don't have no mercy: Cell death programs in plant–microbe interactions. Plant Cell  8  ,  1793–1807.

Dangl, J.L., and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature  411  ,  826–833.

Deng, Z., Huang, S., Ling, P., Chen, C., Yu, C., Weber, C., Moore, G., and Gmitter, F., Jr. (2000). Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor. Appl. Genet.  101  ,  814–822.

Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., and Marco, Y. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA  99  ,  2404–2409.

Dinesh-Kumar, S.P., and Baker, B.J. (2000). Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance. Proc. Natl. Acad. Sci. USA  97  ,  1908–1913.

Dodds, P., Lawrence, G., and Ellis, J. (2001). Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell  13  ,  163–178.

Donald, T., Pellerone, F., Adam-Blondon, A.-F., Bouquet, A., Thomas, M., and Dry, I. (2002). Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor. Appl. Genet.  104  ,  610–618.

Eddy, S.R. (1998). Profile hidden Markov models. Bioinformatics  14  ,  755–763.

Ellis, J.G., Lawrence, G.J., Luck, J.E., and Dodds, P.N. (1999). Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell  11  ,  495–506.

Fitzgerald, K.A., et al. (2001). Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature  413  ,  78–83.

Flor, H.H. (1956). The complementary genic systems in flax and flax rust. Adv. Genet.  8  ,  29–54.

Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Phytopathol.  9  ,  275–296.

Gassmann, W., Hinsch, M.E., and Staskawicz, B.J. (1999). The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J.  20  ,  265–277.

Glazebrook, J. (2001). Genes controlling expression of defense responses in Arabidopsis: 2001 status. Curr. Opin. Plant Biol.  4  ,  301–308.

Grant, M.R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W., and Dangl, J.L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science  269  ,  843–846.

Haas, B.J., Volfovsky, N., Town, C.D., Troukhan, M., Alexandrov, N., Feldmann, K.A., Flavell, R.B., White, O., and Salzberg, S.L. (2002). Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3, RESEARCH0029.

Halterman, D., Zhou, F., Wei, F., Wise, R.P., and Schulze-Lefert, P. (2001). The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J.  25  ,  335–348.

Hammond-Kosack, K.E., and Jones, J.D. (1996). Resistance gene-dependent plant defense responses. Plant Cell  8  ,  1773–1791.

Heath, M.C. (2000). Hypersensitive response-related death. Plant Mol. Biol.  44  ,  321–334.

Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A., and Kolodner, R.D. (2001). Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet.  29  ,  301–305.

Holub, E.B. (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet.  2  ,  516–527.

Hu, Y., Benedict, M.A., Ding, L., and Nunez, G. (1999). Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J.  18  ,  3586–3595.

Hugot, J.P., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature  411  ,  599–603.

Hulbert, S.H., Webb, C.A., Smith, S.M., and Sun, Q. (2001). Resistance gene complexes: Evolution and utilization. Annu. Rev. Phytopathol.  39  ,  285–312.

Hwang, C.F., Bhakta, A.V., Truesdell, G.M., Pudlo, W.M., and Williamson, V.M. (2000). Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell  12  ,  1319–1329.

Inohara, N., and Nunez, G. (2001). The NOD: A signaling module that regulates apoptosis and host defense against pathogens. Oncogene  20  ,  6473–6481.

Inohara, N., Ogura, Y., and Nunez, G. (2002). Nods: A family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol.  5  ,  76–80.

Jones, D.A., and Jones, J.D.G. (1997). The role of leucine-rich repeat proteins in plant defences. Adv. Bot. Res.  24  ,  90–167.

Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J., and Jones, J.D. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science  266  ,  789–793.

Kanazin, V., Marek, L.F., and Shoemaker, R.C. (1996). Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA  93  ,  11746–11750.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.  16  ,  111–120.

Koonin, E.V., and Aravind, L. (2000). The NACHT family: A new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem. Sci.  25  ,  223–224.

Kopp, E.B., and Medzhitov, R. (1999). The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol.  11  ,  13–18.

Kozik, A., Kochetkova, E., and Michelmore, R. (2002). GenomePixelizer: A visualization program for comparative genomics within and between species. Bioinformatics  18  ,  335–336.

Lahaye, T. (2002). The Arabidopsis RRS1-R disease resistance gene: Uncovering the plant's nucleus as the new battlefield of plant defense? Trends Plant Sci.  7  ,  425–427.

Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A., and Ellis, J.G. (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell  7  ,  1195–1206.

Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A., and Schulze-Lefert, P. (1998). Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA  95  ,  370–375.

Long, M., and Deutsch, M. (1999). Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol.  16  ,  1528–1534.

Luck, J.E., Lawrence, G.J., Dodds, P.N., Shepherd, K.W., and Ellis, J.G. (2000). Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell  12  ,  1367–1377.

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences. Science  252  ,  1162–1164.

Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., and Tanksley, S.D. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science  262  ,  1432–1436.

McDowell, J.M., Cuzick, A., Can, C., Beynon, J., Dangl, J.L., and Holub, E.B. (2000). Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J.  22  ,  523–529.

McDowell, J.M., Dhandaydham, M., Long, T.A., Aarts, M.G., Goff, S., Holub, E.B., and Dangl, J.L. (1998). Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell  10  ,  1861–1874.

Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C.A., Jr. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell  2  ,  253–258.

Meyers, B.C., Chin, D.B., Shen, K.A., Sivaramakrishnan, S., Lavelle, D.O., Zhang, Z., and Michelmore, R.W. (1998a). The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell  10  ,  1817–1832.

Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W., and Young, N.D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J.  20  ,  317–332.

Meyers, B.C., Morgante, M., and Michelmore, R.W. (2002). TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J.  32  ,  77–92.

Meyers, B.C., Shen, K.A., Rohani, P., Gaut, B.S., and Michelmore, R.W. (1998b). Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell  10  ,  1833–1846.

Miceli-Richard, C., Lesage, S., Rybojad, M., Prieur, A.M., Manouvrier- Hanu, S., Hafner, R., Chamaillard, M., Zouali, H., Thomas, G., and Hugot, J.P. (2001). CARD15 mutations in Blau syndrome. Nat. Genet  29  ,  19–20.

Michelmore, R.W., and Meyers, B.C. (1998). Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res.  8  ,  1113–1130.

Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., and Williamson, V.M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell  10  ,  1307–1319.

Moffett, P., Farnham, G., Peart, J., and Baulcombe, D.C. (2002). Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J.  21  ,  4511–4519.

Mondragon-Palomino, M., Meyers, B.C., Michelmore, R.W., and Gaut, B.S. (2002). Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res.  12  ,  1305–1315.

Nicholas, K.B., Nicholas, H.B.J., and Deerfield, D.W.I. (1997). GeneDoc: Analysis and visualization of genetic variation. EMBNEW.NEWS  4  ,  14.

Noel, L., Moores, T.L., van der Biezen, E.A., Parniske, M., Daniels, M.J., Parker, J.E., and Jones, J.D. (1999). Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell  11  ,  2099–2112.

Noir, S., Combes, M.C., Anthony, F., and Lashermes, P. (2001). Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol. Genet. Genomics  265  ,  654–662.

Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol.  302  ,  205–217.

Ogura, Y., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature  411  ,  603–606.

Pan, Q., Wendel, J., and Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol.  50  ,  203–213.

Parniske, M., Hammond-Kosack, K.E., Golstein, C., Thomas, C.M., Jones, D.A., Harrison, K., Wulff, B.B., and Jones, J.D. (1997). Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell  91  ,  821–832.

Pollastri, G., Przybylski, D., Rost, B., and Baldi, P. (2002). Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins  47  ,  228–235.

Richly, E., Kurth, J., and Leister, D. (2002). Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol. Biol. Evol.  19  ,  76–84.

Saraste, M., Sibbald, P.R., and Wittinghofer, A. (1990). The P-loop: A common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci.  15  ,  430–434.

Sawant, S.V., Kiran, K., Singh, P.K., and Tuli, R. (2001). Sequence architecture downstream of the initiator codon enhances gene expression and protein stability in plants. Plant Physiol.  126  ,  1630–1636.

Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. USA  95  ,  5857–5864.

Sharp, P.A. (1981). Speculations on RNA splicing. Cell  23  ,  643–646.

Shen, K.A., Chin, D.B., Arroyo-Garcia, R., Ochoa, O.E., Lavelle, D.O., Wroblewski, T., Meyers, B.C., and Michelmore, R.W. (2002). Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol. Plant-Microbe Interact.  15  ,  251–261.

Shen, K.A., Meyers, B.C., Islam-Faridi, M.N., Chin, D.B., Stelly, D.M., and Michelmore, R.W. (1998). Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol. Plant-Microbe Interact.  11  ,  815–823.

Simillion, C., Vandepoele, K., Van Montagu, M.C., Zabeau, M., and Van de Peer, Y. (2002). The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA  99  ,  13627–13632.

Song, R., Llaca, V., and Messing, J. (2002). Mosaic organization of orthologous sequences in grass genomes. Genome Res.  12  ,  1549–1555.

Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T.E., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C., and Ronald, P.C. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science  270  ,  1804–1806.

Sonnhammer, E.L., Eddy, S.R., and Durbin, R. (1997). Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins  28  ,  405–420.

Speulman, E., Bouchez, D., Holub, E.B., and Beynon, J.L. (1998). Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J.  14  ,  467–474.

Stokes, T.L., Kunkel, B.N., and Richards, E.J. (2002). Epigenetic variation in Arabidopsis disease resistance. Genes Dev.  16  ,  171–182.

Swofford, D. (2000). PAUP*: Phylogenetic Analysis Using Parsimony. (Sunderland, MA: Sinauer).

Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA  96  ,  14153–14158.

Tameling, W.I., Elzinga, S.D., Darmin, P.S., Vossen, J.H., Takken, F.L., Haring, M.A., and Cornelissen, B.J. (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell  14  ,  2929–2939.

Tao, Y., Yuan, F., Leister, R.T., Ausubel, F.M., and Katagiri, F. (2000). Mutational analysis of the Arabidopsis nucleotide binding site–leucine-rich repeat resistance gene RPS2. Plant Cell  12  ,  2541–2554.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.  22  ,  4673–4680.

Tor, M., Gordon, P., Cuzick, A., Eulgem, T., Sinapidou, E., Mert-Turk, F., Can, C., Dangl, J.L., and Holub, E.B. (2002). Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell  14  ,  993–1003.

Tornero, P., Chao, R.A., Luthin, W.N., Goff, S.A., and Dangl, J.L. (2002). Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell  14  ,  435–450.

Traut, T.W. (1994). The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur. J. Biochem.  222  ,  9–19.

van der Biezen, E.A., Freddie, C.T., Kahn, K., Parker, J.E., and Jones, J.D. (2002). Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J.  29  ,  439–451.

van der Biezen, E.A., and Jones, J.D. (1998a). Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci.  23  ,  454–456.

van der Biezen, E.A., and Jones, J.D. (1998b). The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol.  8  ,  R226–R227.

Vision, T.J., Brown, D.G., and Tanksley, S.D. (2000). The origins of genomic duplications in Arabidopsis. Science  290  ,  2114–2117.

Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J.  1  ,  945–951.

Wang, G.L., Ruan, D.L., Song, W.Y., Sideris, S., Chen, L., Pi, L.Y., Zhang, S., Zhang, Z., Fauquet, C., Gaut, B.S., Whalen, M.C., and Ronald, P.C. (1998). Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell  10  ,  765–779.

Wang, L., Manji, G.A., Grenier, J.M., Al-Garawi, A., Merriam, S., Lora, J.M., Geddes, B.J., Briskin, M., DiStefano, P.S., and Bertin, J. (2002). PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J. Biol. Chem.  277  ,  29874–29880.

Warren, R.F., Henk, A., Mowery, P., Holub, E., and Innes, R.W. (1998). A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell  10  ,  1439–1452.

Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor. Cell  78  ,  1101–1115.

Xiao, S., Ellwood, S., Calis, O., Patrick, E., Li, T., Coleman, M., and Turner, J.G. (2001). Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science  291  ,  118–120.

Yu, Y.G., Buss, G.R., and Maroof, M.A. (1996). Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA  93  ,  11751–11756.

Zhu, H., Cannon, S.B., Young, N.D., and Cook, D.R. (2002). Phylogeny and genomic organization of the TIR and non-TIR NBS-LRR resistance gene family in Medicago truncatula. Mol. Plant-Microbe Interact.  15  ,  529–539.