Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
International Diabetes Federation (2021) IDF Diabetes Atlas. Brussels, Belgium, International Diabetes Federation, 10th ed. https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf. Accessed on 10 Dec 2021
Kaveeshwar SA, Cornwall J (2014) The current state of diabetes mellitus in India. Aust Med J 7(1):45
Kolb H, Martin S (2017) Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med 15(1):1–11
Sanghera DK, Demirci FY, Been L, Ortega L, Ralhan S, Wander GS et al (2010) PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor. Metabolism 59(4):492–501
Buysschaert M, Hermans MP (2004) Non-pharmacological management of type 2 diabetes. Acta Clin Belg 59(1):14–19
Raveendran AV, Chacko EC, Pappachan JM (2018) Non-pharmacological treatment options in the management of diabetes mellitus. Eur Endocrinol 14(2):31
Taylor J, Stubbs B, Hewitt C, Ajjan RA, Alderson SL, Gilbody S, Holt RI, Hosali P, Hughes T, Kayalackakom T, Kellar I (2017) The effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in adults with severe mental illness: a systematic review and meta-analysis. PLoS ONE 12(1):e0168549
Holliday EG (2013) Hints of unique genetic effects for type 2 diabetes in India. Diabetes 62(5):1369–1370
Wells JC, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS (2016) The elevated susceptibility to diabetes in India: an evolutionary perspective. Front Public Health 4:145
Fitipaldi H, McCarthy MI, Florez JC, Franks PW (2018) A global overview of precision medicine in type 2 diabetes. Diabetes 67(10):1911–1922
World Health Organisation (2022) Diagnosis and management of type 2 diabetes mellitus. https://apps.who.int/iris/rest/bitstreams/1274478/retrieve. Accessed on 12 July 2022
American Diabetes Association. Diagnosis (2022). https://www.diabetes.org/diabetes/a1c/diagnosis. Accessed on 12 July 2022
Candidate Gene. National Human Genome Research Institute (2021). https://www.genome.gov/genetics-glossary/Candidate-Gene#:~:text=A%20candidate%20gene%20is%20a,the%20disease%20or%20other%20phenotype. Accessed on 1 Jan 2022
Chen J, Meng Y, Zhou J, Zhuo M, Ling F, Zhang Y, Wang X (2013) Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells. J Diabetes Res. https://doi.org/10.1155/2013/970435
Nair AK, Sugunan D, Kumar H, Anilkumar G (2010) Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: association of SNPs in STRA6 with type 2 diabetes in a South Indian population. PLoS ONE 5(7):e11444
Hassanali N, De Silva NMG, Robertson N, Rayner NW, Barrett A, Bennett AJ et al (2014) Evaluation of common type 2 diabetes risk variants in a South Asian population of Sri Lankan descent. PLoS ONE 9(6):e98608
Zyriax BC, Salazar R, Hoeppner W, Vettorazzi E, Herder C, Windler E (2013) The association of genetic markers for type 2 diabetes with prediabetic status-cross-sectional data of a diabetes prevention trial. PLoS ONE 8(9):e75807
Saxena R, Saleheen D, Been LF, Garavito ML, Braun T, Bjonnes A, Sanghera DK (2013) Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 62(5):1746–1755
Phani NM, Guddattu V, Bellampalli R, Seenappa V, Adhikari P, Nagri SK et al (2014) Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS ONE 9(9):e107021
Aswathi R, Viji D, Charmine PSP, Husain RSRA, Ameen SHN, Ahmed SS, Ramakrishnan V (2020) Influence of KCNJ11 gene polymorphism in T2DM of south Indian population. Front Biosci Elite 12(2):199–222
Radha V, Kanthimathi S, Mohan V (2011) Genetics of type 2 diabetes in Asian Indians. Diabetes Manag 1(3):309
Jyothi KU, Reddy BM (2015) Gene–gene and gene–environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India. Meta Gene 5:9–20
Xi X, Ma J (2020) A meta-analysis on genetic associations between Transcription Factor 7 Like 2 polymorphisms and type 2 diabetes mellitus. Genomics 112(2):1192–1196
Ramya K, Radha V, Ghosh S, Majumder PP, Mohan V (2011) Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south Indians (CURES-79). Diabetes Technol Ther 13(1):33–42
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341
Barroso I, Luan JA, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ, Froguel P (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol 1(1):e20
Vohl ADJM (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:7680
Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G et al (2003) Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6 2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52(2):568–572
Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A et al (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39(8):951–953
Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Thorsteinsdottir U (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42(7):579–589
Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345
Dupuis J, Langenberg C, Prokopenko I, Saxena R et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genetics. 42(2):105–116
Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39(2):218–225
Sarhangi N, Sharifi F, Hashemian L, Hassani Doabsari M, Heshmatzad K, Rahbaran M et al (2020) PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Rep 10(1):1–18
Pirie FJ, Motala AA, Pegoraro RJ, Paruk IM, Govender T, Rom L (2010) Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes. Afr J Diabetes Med 18(1):12–16
Tekola-Ayele F, Adeyemo AA, Rotimi CN (2013) Genetic epidemiology of type 2 diabetes and cardiovascular diseases in Africa. Prog Cardiovasc Dis 56(3):251–260
Adeyemo AA, Zaghloul NA, Chen G, Doumatey AP, Leitch CC, Hostelley TL et al (2019) ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat Commun 10(1):1–12
Cheng CY, Reich D, Haiman CA, Tandon A, Patterson N, Elizabeth S et al (2012) African ancestry and its correlation to type 2 diabetes in African Americans: a genetic admixture analysis in three US population cohorts. PLoS ONE 7(3):e32840
Mercader JM, Florez JC (2017) The genetic basis of type 2 diabetes in Hispanics and Latin Americans: challenges and opportunities. Front Public Health. https://doi.org/10.3389/fpubh.2017.00329
Waters KM, Stram DO, Hassanein MT, Le Marchand L, Wilkens LR, Maskarinec G et al (2010) Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet 6(8):e1001078
Dajani R, Li J, Wei Z, March ME, Xia Q, Khader Y, Hakonarson H (2017) Genome-wide association study identifies novel type II diabetes risk loci in Jordan subpopulations. PeerJ 5:e3618
Alfaqih MA, Al-Mughales F, Al-Shboul O, Al Qudah M, Khader YS, Al-Jarrah M (2018) Association of adiponectin and rs1501299 of the ADIPOQ gene with prediabetes in Jordan. Biomolecules 8(4):117
Hebbar P, Abu-Farha M, Alkayal F, Nizam R, Elkum N, Melhem M et al (2020) Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population. Sci Rep 10(1):1–17
Rizvi S, Raza ST, Rahman Q, Mahdi F (2016) Role of GNB3, NET, KCNJ11, TCF7L2 and GRL genes single nucleotide polymorphism in the risk prediction of type 2 diabetes mellitus. 3 Biotech 6(2):1–9
Iwata M, Maeda S, Kamura Y, Takano A, Kato H, Murakami S et al (2012) Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care 35(8):1763–1770
Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ES et al (2015) First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS ONE 10(3):e0119333
Kimura CI, Kadowaki T (2000) The Prol2Ala polymorphism in PPAR gamma2 may confer resistance to type 2 diabetes. Biochem Biophys Res Commun 271:212–216
Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 59(8):2068–2074
Ali S, Chopra R, Manvati S, Singh YP, Kaul N, Behura A et al (2013) Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS ONE 8(3):e58881
El-Lebedy D, Ashmawy I (2016) Common variants in TCF7L2 and CDKAL1 genes and risk of type 2 diabetes mellitus in Egyptians. J Genetic Eng Biotechnol 14(2):247–251
Reyes-López R, Perez-Luque E, Malacara JM (2019) Relationship of lactation, BMI, and rs12255372 TCF7L2 polymorphism on the conversion to type 2 diabetes mellitus in women with previous gestational diabetes. Gynecol Endocrinol 35(5):412–416
Banihashemi P, Aghaei Meybodi HR, Afshari M, Sarhangi N, Hasanzad M (2021) Association analysis of HHEX gene variant with type 2 diabetes risk. Int J Diabetes Dev Count 41(1):43–47
Ryoo H, Woo J, Kim Y, Lee C (2011) Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur J Hum Genet 19(6):672–675
Tian Y, Xu J, Huang T, Cui J, Zhang W, Song W et al (2019) A novel polymorphism (rs35612982) in CDKAL1 is a risk factor of type 2 diabetes: a case-control study. Kidney Blood Press Res 44(6):1313–1326
Tabassum R, Chavali S, Dwivedi OP, Tandon N, Bharadwaj D (2008) Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians. J Hum Genet 53(11):957–965
Song Y, Li S, He C (2022) PPARG gene polymorphisms, metabolic disorders, and coronary artery disease. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.808929
Lv S, Wang W, Wang H, Zhu Y, Lei C (2019) PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer 19(1):1–13
Zhancheng W, Wenhui J, Yun J, Lingli W, Huijun H, Yan S, Jin L (2019) The dominant models of KCNJ11 E23K and KCNMB1 E65K are associated with essential hypertension (EH) in Asian: Evidence from a meta-analysis. Medicine 98(23):e15828
Yang YY, Long RK, Ferrara CT, Gitelman SE, German MS, Yang SB (2017) A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11. Channels 11(6):636–647
Li J, Zhou L, Ouyang X, He P (2021) Transcription factor-7-like-2 (TCF7L2) in atherosclerosis: a potential biomarker and therapeutic target. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.701279
del Bosque-Plata L, Hernández-Cortés EP, Gragnoli C (2022) The broad pathogenetic role of TCF7L2 in human diseases beyond type 2 diabetes. J Cell Physiol 237(1):301–312
Guo Y, He Y (2020) Comprehensive analysis of the expression of SLC30A family genes and prognosis in human gastric cancer. Sci Rep 10(1):1–22
Zhang J, McKenna LB, Bogue CW, Kaestner KH (2014) The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Dev 28(8):829–834
Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J et al (2020) Clinicopathological significances of cancer stem cell-associated HHEX expression in breast cancer. Front Cell Dev Biol 8:1613
Bao XY, Xie C, Yang MS (2012) Association between type 2 diabetes and CDKN2A/B: a meta-analysis study. Mol Biol Rep 39(2):1609–1616
Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC (2019) Familial melanoma: diagnostic and management implications. Dermatol Practical Concept 9(1):10
Wang J, Chen L, Qiang P (2021) The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int 21(1):1–11
Palmer CJ, Bruckner RJ, Paulo JA, Kazak L, Long JZ, Mina AI et al (2017) Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol Metab 6(10):1212–1225
Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L et al (2019) Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 10(1):1–17
Sailer S, Keller MA, Werner ER, Watschinger K (2021) The emerging physiological role of AGMO 10 years after its gene identification. Life 11(2):88
Yu J, Liu L, Li Z, Wang Y, Zhang W, Jin Y et al (2021) Association of single nucleotide polymorphisms in ADIPOQ gene with risk of hypertension: a systematic review and meta-analysis. Int J Mol Epidemiol Genetics 12(5):90
Blomqvist MEL, Chalmers K, Andreasen N, Bogdanovic N, Wilcock GK, Cairns NJ et al (2005) Sequence variants of IDE are associated with the extent of β-amyloid deposition in the Alzheimer’s disease brain. Neurobiol Aging 26(6):795–802
Lorenz-Depiereux B, Schnabel D, Tiosano D, Häusler G, Strom TM (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 86(2):267–272
He D, Fu M, Miao S, Hotta K, Chandak GR, Xi B (2014) FTO gene variant and risk of hypertension: a meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism 63(5):633–639
Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X et al (2020) FTO–a common genetic basis for obesity and cancer. Front Genet 11:559138
Kong Y, Sharma RB, Nwosu BU, Alonso LC (2016) Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 59(8):1579–1593
Thakur N, Kupani M, Mannan R, Pruthi A, Mehrotra S (2021) Genetic association between CDKN2B/CDKN2B-AS1 gene polymorphisms with primary glaucoma in a North Indian cohort: an original study and an updated meta-analysis. BMC Med Genomics 14(1):1–20
Zhong J, Chen X, Ye H, Wu N, Chen X, Duan S (2017) CDKN2A and CDKN2B methylation in coronary heart disease cases and controls. Exp Ther Med 14(6):6093–6098
Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR et al (2017) Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell 170(1):199–212
Wang X, Zhang L, Ou G, Wei Q, Wu L, Chen Q (2019) Association of DUSP9 gene polymorphisms with gestational diabetes mellitus. Chin J Med Genet 36(3):267–270
Yang Q, Civelek M (2020) Transcription factor KLF14 and metabolic syndrome. Front Cardiovasc Med 7:91
Gene cards. CADPS. https://www.genecards.org/cgi-bin/carddisp.pl?gene=CADPS. Accessed on 12 July 2022
Gene cards. VRS1. https://www.genecards.org/cgi-bin/carddisp.pl?gene=VARS1 Accessed on 12 July 2022
Hu S, Yan J, You Y, Yang G, Zhou H, Li X et al (2019) Association of polymorphisms in STRA6 gene with gestational diabetes mellitus in a Chinese Han population. Medicine 98(11):e14548