Genetics and Biology of Microcephaly and Lissencephaly
Tài liệu tham khảo
Barkovich, 2005, A developmental and genetic classification for malformations of cortical development, Neurology, 65, 1873, 10.1212/01.wnl.0000183747.05269.2d
Mochida, 2001, Molecular genetics of human microcephaly, Curr Opin Neurol, 14, 151, 10.1097/00019052-200104000-00003
Friede, 1989, Disturbances in bulk growth: megalencephaly, micrencephaly, atelencephaly and others, 296
Cox, 2006, What primary microcephaly can tell us about brain growth, Trends Mol Med, 12, 358, 10.1016/j.molmed.2006.06.006
Nicholas, 2009, The molecular landscape of ASPM mutations in primary microcephaly, J Med Genet, 46, 249, 10.1136/jmg.2008.062380
Roberts, 2002, Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation, J Med Genet, 39, 718, 10.1136/jmg.39.10.718
Woods, 2004, Human microcephaly, Curr Opin Neurobiol, 14, 112, 10.1016/j.conb.2004.01.003
Shen, 2005, ASPM mutations identified in patients with primary microcephaly and seizures, J Med Genet, 10.1136/jmg.2004.027706
Jackson, 1998, Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter, Am J Hum Genet, 63, 541, 10.1086/301966
Jamieson, 2000, Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32, Am J Hum Genet, 67, 1575, 10.1086/316909
Jamieson, 1999, Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15, Am J Hum Genet, 65, 1465, 10.1086/302640
Kumar, 2009, Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly, Am J Hum Genet, 84, 286, 10.1016/j.ajhg.2009.01.017
Moynihan, 2000, A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34, Am J Hum Genet, 66, 724, 10.1086/302777
Pattison, 2000, A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31, Am J Hum Genet, 67, 1578, 10.1086/316910
Roberts, 1999, The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1-13.2, Eur J Hum Genet, 7, 815, 10.1038/sj.ejhg.5200385
Jackson, 2002, Identification of microcephalin, a protein implicated in determining the size of the human brain, Am J Hum Genet, 71, 136, 10.1086/341283
Bond, 2005, A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size, Nat Genet, 37, 353, 10.1038/ng1539
Bond, 2003, Protein-truncating mutations in ASPM cause variable reduction in brain size, Am J Hum Genet, 73, 1170, 10.1086/379085
Bond, 2002, ASPM is a major determinant of cerebral cortical size, Nat Genet, 32, 316, 10.1038/ng995
Desir, 2008, Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally, Am J Med Genet A, 146A, 1439, 10.1002/ajmg.a.32312
Trimborn, 2004, Mutations in microcephalin cause aberrant regulation of chromosome condensation, Am J Hum Genet, 75, 261, 10.1086/422855
do Carmo Avides, 1999, Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers, Science, 283, 1733, 10.1126/science.283.5408.1733
Graser, 2007, Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion, J Cell Sci, 120, 4321, 10.1242/jcs.020248
Kleylein-Sohn, 2007, Plk4-induced centriole biogenesis in human cells, Dev Cell, 13, 190, 10.1016/j.devcel.2007.07.002
Fish, 2006, Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells, Proc Natl Acad Sci USA, 103, 10438, 10.1073/pnas.0604066103
Chenn, 1995, Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis, Cell, 82, 631, 10.1016/0092-8674(95)90035-7
Lin, 2005, BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly, Proc Natl Acad Sci USA, 102, 15105, 10.1073/pnas.0507722102
Xu, 2004, Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1, J Biol Chem, 279, 34091, 10.1074/jbc.C400139200
Alderton, 2006, Regulation of mitotic entry by microcephalin and its overlap with ATR signalling, Nat Cell Biol, 8, 725, 10.1038/ncb1431
Zhong, 2006, Microcephalin encodes a centrosomal protein, Cell Cycle, 5, 457, 10.4161/cc.5.4.2481
Rai, 2008, Differential regulation of centrosome integrity by DNA damage response proteins, Cell Cycle, 7, 2225, 10.4161/cc.7.14.6303
Evans, 2004, Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans, Hum Mol Genet, 13, 489, 10.1093/hmg/ddh055
Kouprina, 2004, Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion, PLoS Biol, 2, E126, 10.1371/journal.pbio.0020126
Zhang, 2003, Evolution of the human ASPM gene, a major determinant of brain size, Genetics, 165, 2063, 10.1093/genetics/165.4.2063
Wang, 2004, Molecular evolution of microcephalin, a gene determining human brain size, Hum Mol Genet, 13, 1131, 10.1093/hmg/ddh127
Evans, 2006, Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ, Gene, 375, 75, 10.1016/j.gene.2006.02.019
Muntoni, 2002, Defective glycosylation in muscular dystrophy, Lancet, 360, 1419, 10.1016/S0140-6736(02)11397-3
Reiner, 1993, Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats, Nature, 364, 717, 10.1038/364717a0
Dobyns, 1991, Clinical and molecular diagnosis of Miller-Dieker syndrome, Am J Hum Genet, 48, 584
Cardoso, 2003, Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3, Am J Hum Genet, 72, 918, 10.1086/374320
Dobyns, 1993, Lissencephaly, JAMA, 270, 2838, 10.1001/jama.270.23.2838
Kuwano, 1991, Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization, Am J Hum Genet, 49, 707
des Portes, 1998, A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, Cell, 92, 51, 10.1016/S0092-8674(00)80898-3
Gleeson, 1998, Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein, Cell, 92, 63, 10.1016/S0092-8674(00)80899-5
Keays, 2007, Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans, Cell, 128, 45, 10.1016/j.cell.2006.12.017
Bahi-Buisson, 2008, Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations, J Med Genet, 45, 647, 10.1136/jmg.2008.058073
Poirier, 2007, Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A), Hum Mutat, 28, 1055, 10.1002/humu.20572
Pilz, 1998, LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation, Hum Mol Genet, 7, 2029, 10.1093/hmg/7.13.2029
Morris-Rosendahl, 2008, Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly, Clin Genet, 74, 425, 10.1111/j.1399-0004.2008.01093.x
Dobyns, 1999, Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly, Neurology, 53, 270, 10.1212/WNL.53.2.270
Forman, 2005, Genotypically defined lissencephalies show distinct pathologies, J Neuropathol Exp Neurol, 64, 847, 10.1097/01.jnen.0000182978.56612.41
Jissendi-Tchofo, 2009, Midbrain-hindbrain involvement in lissencephalies, Neurology, 72, 410, 10.1212/01.wnl.0000333256.74903.94
Hong, 2000, Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations, Nat Genet, 26, 93, 10.1038/79246
Boycott, 2005, Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification, Am J Hum Genet, 77, 477, 10.1086/444400
Kitamura, 2002, Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans, Nat Genet, 32, 359, 10.1038/ng1009
Bonneau, 2002, X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings, Ann Neurol, 51, 340, 10.1002/ana.10119
Kato, 2004, Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation, Hum Mutat, 23, 147, 10.1002/humu.10310
Stromme, 2002, Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy, Nat Genet, 30, 441, 10.1038/ng862
Kato, 2007, A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome), Am J Hum Genet, 81, 361, 10.1086/518903
Smith, 2000, Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1, Nat Cell Biol, 2, 767, 10.1038/35041000
Shu, 2004, Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning, Neuron, 44, 263, 10.1016/j.neuron.2004.09.030
Tanaka, 2004, Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration, J Cell Biol, 165, 709, 10.1083/jcb.200309025
Tsai, 2007, Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue, Nat Neurosci, 10, 970, 10.1038/nn1934
Francis, 1999, Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons, Neuron, 23, 247, 10.1016/S0896-6273(00)80777-1
Gleeson, 1999, Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons, Neuron, 23, 257, 10.1016/S0896-6273(00)80778-3
Horesh, 1999, Doublecortin, a stabilizer of microtubules, Hum Mol Genet, 8, 1599, 10.1093/hmg/8.9.1599
D'Arcangelo, 1995, A protein related to extracellular matrix proteins deleted in the mouse mutant reeler, Nature, 374, 719, 10.1038/374719a0
Caviness, 1973, Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis, J Comp Neurol, 148, 141, 10.1002/cne.901480202
Falconer, 1951, 2 new mutants, trembler and reeler, with neurological actions in the house mouse (Mus musculus L.), J Genet, 50, 192, 10.1007/BF02996215
Dulabon, 2000, Reelin binds alpha3beta1 integrin and inhibits neuronal migration, Neuron, 27, 33, 10.1016/S0896-6273(00)00007-6
Hiesberger, 1999, Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation, Neuron, 24, 481, 10.1016/S0896-6273(00)80861-2
Trommsdorff, 1999, Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2, Cell, 97, 689, 10.1016/S0092-8674(00)80782-5
Assadi, 2003, Interaction of reelin signaling and Lis1 in brain development, Nat Genet, 35, 270, 10.1038/ng1257
Zhang, 2007, The Pafah1b complex interacts with the Reelin receptor VLDLR, PLoS ONE, 2, e252, 10.1371/journal.pone.0000252
McManus, 2004, Lis1 is necessary for normal non-radial migration of inhibitory interneurons, Am J Pathol, 165, 775, 10.1016/S0002-9440(10)63340-8
Pancoast, 2005, Interneuron deficits in patients with the Miller-Dieker syndrome, Acta Neuropathol, 109, 400, 10.1007/s00401-004-0979-z
Sheen, 2006, Impaired proliferation and migration in human Miller-Dieker neural precursors, Ann Neurol, 60, 137, 10.1002/ana.20843
Pawlisz, 2008, Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination, Hum Mol Genet, 17, 2441, 10.1093/hmg/ddn144