Genetics and Biology of Microcephaly and Lissencephaly

Seminars in Pediatric Neurology - Tập 16 - Trang 120-126 - 2009
Ganeshwaran H. Mochida1,2,3
1Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
2Pediatric Neurology Unit, Massachusetts General Hospital, Boston, MA
3Division of Genetic and Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, MA

Tài liệu tham khảo

Barkovich, 2005, A developmental and genetic classification for malformations of cortical development, Neurology, 65, 1873, 10.1212/01.wnl.0000183747.05269.2d Mochida, 2001, Molecular genetics of human microcephaly, Curr Opin Neurol, 14, 151, 10.1097/00019052-200104000-00003 Friede, 1989, Disturbances in bulk growth: megalencephaly, micrencephaly, atelencephaly and others, 296 Cox, 2006, What primary microcephaly can tell us about brain growth, Trends Mol Med, 12, 358, 10.1016/j.molmed.2006.06.006 Nicholas, 2009, The molecular landscape of ASPM mutations in primary microcephaly, J Med Genet, 46, 249, 10.1136/jmg.2008.062380 Roberts, 2002, Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation, J Med Genet, 39, 718, 10.1136/jmg.39.10.718 Woods, 2004, Human microcephaly, Curr Opin Neurobiol, 14, 112, 10.1016/j.conb.2004.01.003 Shen, 2005, ASPM mutations identified in patients with primary microcephaly and seizures, J Med Genet, 10.1136/jmg.2004.027706 Jackson, 1998, Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter, Am J Hum Genet, 63, 541, 10.1086/301966 Jamieson, 2000, Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32, Am J Hum Genet, 67, 1575, 10.1086/316909 Jamieson, 1999, Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15, Am J Hum Genet, 65, 1465, 10.1086/302640 Kumar, 2009, Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly, Am J Hum Genet, 84, 286, 10.1016/j.ajhg.2009.01.017 Moynihan, 2000, A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34, Am J Hum Genet, 66, 724, 10.1086/302777 Pattison, 2000, A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31, Am J Hum Genet, 67, 1578, 10.1086/316910 Roberts, 1999, The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1-13.2, Eur J Hum Genet, 7, 815, 10.1038/sj.ejhg.5200385 Jackson, 2002, Identification of microcephalin, a protein implicated in determining the size of the human brain, Am J Hum Genet, 71, 136, 10.1086/341283 Bond, 2005, A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size, Nat Genet, 37, 353, 10.1038/ng1539 Bond, 2003, Protein-truncating mutations in ASPM cause variable reduction in brain size, Am J Hum Genet, 73, 1170, 10.1086/379085 Bond, 2002, ASPM is a major determinant of cerebral cortical size, Nat Genet, 32, 316, 10.1038/ng995 Desir, 2008, Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally, Am J Med Genet A, 146A, 1439, 10.1002/ajmg.a.32312 Trimborn, 2004, Mutations in microcephalin cause aberrant regulation of chromosome condensation, Am J Hum Genet, 75, 261, 10.1086/422855 do Carmo Avides, 1999, Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers, Science, 283, 1733, 10.1126/science.283.5408.1733 Graser, 2007, Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion, J Cell Sci, 120, 4321, 10.1242/jcs.020248 Kleylein-Sohn, 2007, Plk4-induced centriole biogenesis in human cells, Dev Cell, 13, 190, 10.1016/j.devcel.2007.07.002 Fish, 2006, Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells, Proc Natl Acad Sci USA, 103, 10438, 10.1073/pnas.0604066103 Chenn, 1995, Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis, Cell, 82, 631, 10.1016/0092-8674(95)90035-7 Lin, 2005, BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly, Proc Natl Acad Sci USA, 102, 15105, 10.1073/pnas.0507722102 Xu, 2004, Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1, J Biol Chem, 279, 34091, 10.1074/jbc.C400139200 Alderton, 2006, Regulation of mitotic entry by microcephalin and its overlap with ATR signalling, Nat Cell Biol, 8, 725, 10.1038/ncb1431 Zhong, 2006, Microcephalin encodes a centrosomal protein, Cell Cycle, 5, 457, 10.4161/cc.5.4.2481 Rai, 2008, Differential regulation of centrosome integrity by DNA damage response proteins, Cell Cycle, 7, 2225, 10.4161/cc.7.14.6303 Evans, 2004, Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans, Hum Mol Genet, 13, 489, 10.1093/hmg/ddh055 Kouprina, 2004, Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion, PLoS Biol, 2, E126, 10.1371/journal.pbio.0020126 Zhang, 2003, Evolution of the human ASPM gene, a major determinant of brain size, Genetics, 165, 2063, 10.1093/genetics/165.4.2063 Wang, 2004, Molecular evolution of microcephalin, a gene determining human brain size, Hum Mol Genet, 13, 1131, 10.1093/hmg/ddh127 Evans, 2006, Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ, Gene, 375, 75, 10.1016/j.gene.2006.02.019 Muntoni, 2002, Defective glycosylation in muscular dystrophy, Lancet, 360, 1419, 10.1016/S0140-6736(02)11397-3 Reiner, 1993, Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats, Nature, 364, 717, 10.1038/364717a0 Dobyns, 1991, Clinical and molecular diagnosis of Miller-Dieker syndrome, Am J Hum Genet, 48, 584 Cardoso, 2003, Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3, Am J Hum Genet, 72, 918, 10.1086/374320 Dobyns, 1993, Lissencephaly, JAMA, 270, 2838, 10.1001/jama.270.23.2838 Kuwano, 1991, Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization, Am J Hum Genet, 49, 707 des Portes, 1998, A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, Cell, 92, 51, 10.1016/S0092-8674(00)80898-3 Gleeson, 1998, Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein, Cell, 92, 63, 10.1016/S0092-8674(00)80899-5 Keays, 2007, Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans, Cell, 128, 45, 10.1016/j.cell.2006.12.017 Bahi-Buisson, 2008, Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations, J Med Genet, 45, 647, 10.1136/jmg.2008.058073 Poirier, 2007, Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A), Hum Mutat, 28, 1055, 10.1002/humu.20572 Pilz, 1998, LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation, Hum Mol Genet, 7, 2029, 10.1093/hmg/7.13.2029 Morris-Rosendahl, 2008, Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly, Clin Genet, 74, 425, 10.1111/j.1399-0004.2008.01093.x Dobyns, 1999, Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly, Neurology, 53, 270, 10.1212/WNL.53.2.270 Forman, 2005, Genotypically defined lissencephalies show distinct pathologies, J Neuropathol Exp Neurol, 64, 847, 10.1097/01.jnen.0000182978.56612.41 Jissendi-Tchofo, 2009, Midbrain-hindbrain involvement in lissencephalies, Neurology, 72, 410, 10.1212/01.wnl.0000333256.74903.94 Hong, 2000, Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations, Nat Genet, 26, 93, 10.1038/79246 Boycott, 2005, Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification, Am J Hum Genet, 77, 477, 10.1086/444400 Kitamura, 2002, Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans, Nat Genet, 32, 359, 10.1038/ng1009 Bonneau, 2002, X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings, Ann Neurol, 51, 340, 10.1002/ana.10119 Kato, 2004, Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation, Hum Mutat, 23, 147, 10.1002/humu.10310 Stromme, 2002, Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy, Nat Genet, 30, 441, 10.1038/ng862 Kato, 2007, A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome), Am J Hum Genet, 81, 361, 10.1086/518903 Smith, 2000, Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1, Nat Cell Biol, 2, 767, 10.1038/35041000 Shu, 2004, Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning, Neuron, 44, 263, 10.1016/j.neuron.2004.09.030 Tanaka, 2004, Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration, J Cell Biol, 165, 709, 10.1083/jcb.200309025 Tsai, 2007, Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue, Nat Neurosci, 10, 970, 10.1038/nn1934 Francis, 1999, Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons, Neuron, 23, 247, 10.1016/S0896-6273(00)80777-1 Gleeson, 1999, Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons, Neuron, 23, 257, 10.1016/S0896-6273(00)80778-3 Horesh, 1999, Doublecortin, a stabilizer of microtubules, Hum Mol Genet, 8, 1599, 10.1093/hmg/8.9.1599 D'Arcangelo, 1995, A protein related to extracellular matrix proteins deleted in the mouse mutant reeler, Nature, 374, 719, 10.1038/374719a0 Caviness, 1973, Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis, J Comp Neurol, 148, 141, 10.1002/cne.901480202 Falconer, 1951, 2 new mutants, trembler and reeler, with neurological actions in the house mouse (Mus musculus L.), J Genet, 50, 192, 10.1007/BF02996215 Dulabon, 2000, Reelin binds alpha3beta1 integrin and inhibits neuronal migration, Neuron, 27, 33, 10.1016/S0896-6273(00)00007-6 Hiesberger, 1999, Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation, Neuron, 24, 481, 10.1016/S0896-6273(00)80861-2 Trommsdorff, 1999, Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2, Cell, 97, 689, 10.1016/S0092-8674(00)80782-5 Assadi, 2003, Interaction of reelin signaling and Lis1 in brain development, Nat Genet, 35, 270, 10.1038/ng1257 Zhang, 2007, The Pafah1b complex interacts with the Reelin receptor VLDLR, PLoS ONE, 2, e252, 10.1371/journal.pone.0000252 McManus, 2004, Lis1 is necessary for normal non-radial migration of inhibitory interneurons, Am J Pathol, 165, 775, 10.1016/S0002-9440(10)63340-8 Pancoast, 2005, Interneuron deficits in patients with the Miller-Dieker syndrome, Acta Neuropathol, 109, 400, 10.1007/s00401-004-0979-z Sheen, 2006, Impaired proliferation and migration in human Miller-Dieker neural precursors, Ann Neurol, 60, 137, 10.1002/ana.20843 Pawlisz, 2008, Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination, Hum Mol Genet, 17, 2441, 10.1093/hmg/ddn144