Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis

Nature Catalysis - Tập 3 Số 3 - Trang 319-328
Sandra Alonso1, Gerard Santiago2, Isabel Cea‐Rama3, Laura Fernández-López1, Cristina Coscolín1, Jan Modregger4, Anna K. Ressmann4, Mónica Martínez‐Martínez1, Helena Marrero1, Rafael Bargiela5, Marcos Pita1, Jose L. Ugia Gonzalez1, Manon L. Briand6, David Rojo7, Coral Barbas7, Francisco J. Plou1, Peter N. Golyshin5, Patrick Shahgaldian6, J. Sanz‐Aparicio3, Vı́ctor Guallar8, Manuel Ferrer1
1Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
2Barcelona Supercomputing Center (BSC), Barcelona, Spain
3Department of Crystallography & Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
4EUCODIS Bioscience, Vienna, Austria
5School of Natural Sciences, Bangor University, Bangor, UK
6Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
7Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
8Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bren, K. L. Engineered biomolecular catalysts. J. Am. Chem. Soc. 139, 14331–14334 (2017).

Ebert, M. C. & Pelletier, J. N. Computational tools for enzyme improvement: why everyone can - and should - use them. Curr. Opin. Chem. Biol. 37, 89–96 (2017).

Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

Acebes, S. et al. Rational enzyme engineering through biophysical and biochemical modeling. ACS Catal. 6, 1624–1629 (2016).

Seelig, B. & Szostak, J. W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

Richter, F. et al. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 134, 16197–16206 (2012).

Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6, 303–309 (2014).

Moroz, Y. S. et al. New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 137, 14905–14911 (2015).

Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

Khersonsky, O. et al. Optimization of the in-silico-designed Kemp eliminase KE70 by computational design and directed evolution. J. Mol. Biol. 407, 391–412 (2011).

Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

Lewis, J. C. Artificial metalloenzymes and metallopeptide catalysts for organic synthesis. ACS Catal. 3, 2954–2975 (2013).

Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2013).

Drienovská, I. et al. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

Bos, J. et al. Enantioselective artificial metalloenzymes by creation of a novel active site at the protein dimer interface. Angew. Chem. Int. Ed. 51, 7472–7475 (2012).

Lin, Y.-W. et al. Rational design of heterodimeric protein using domain swapping for myoglobin. Angew. Chem. Int. Ed. 54, 511–515 (2015).

Farid, T. A. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat. Chem. Biol. 9, 826–833 (2013).

Roy, A. et al. De novo design of an artificial bis[4Fe-4S] binding protein. Biochemistry 52, 7586–7594 (2013)..

Tebo, A. G. & Pecoraro, V. L. Artificial metalloenzymes derived from three-helix bundles. Curr. Opin. Chem. Biol. 25, 65–70 (2015).

Felice, M. et al. Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity. Chem. Commun. 51, 9324–9327 (2015).

Santiago, G. et al. Rational engineering of multiple active sites in an ester hydrolase. Biochemistry 57, 2245–2255 (2018).

Zollner H. Handbook of Enzyme Inhibitors (Wiley‐VCH, 1999).

Myers, D. K. Competition of the aliesterase in rat serum with the pseudo cholinesterase for diisopropyl fluorophosphonate. Science 115, 568–570 (1952).

Beller M., Renken A. & van Santen R. A. Catalysis: From Principles to Applications (Wiley-VCH, 2012).

Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

Wang, T. et al. Rational redesign of the active site of selenosubtilisin with strongly enhanced glutathione peroxidase activity. J. Catal. 359, 27–35 (2018).

Hoque, M. A. et al. Stepwise loop insertion strategy for active site remodeling to generate novel enzyme functions. ACS Chem. Biol. 12, 1188–1193 (2017).

Payer, S. E. et al. A rational active-site redesign converts a decarboxylase into a C=C hydratase: “Tethered Acetate” supports enantioselective hydration of 4-hydroxystyrenes. ACS Catal. 8, 2438–2442 (2018).

Zastrow, M. L. & Pecoraro, V. L. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J. Am. Chem. Soc. 135, 5895–5903 (2013).

Ross, M. R. et al. Histidine orientation modulates the structure and dynamics of a de novo metalloenzyme active site. J. Am. Chem. Soc. 137, 10164–10176 (2015).

Der, B. S., Edwards, D. R. & Kuhlman, B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51, 3933–3940 (2012).

Khare, S. D. et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8, 294–300 (2012).

Zastrow, M. L. et al. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012).

Zandonella, G. et al. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262, 63–69 (1999).

Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257 (2012).

Koelsch, C. F., Hochmann, H. & Le Claire, C. D. The Friedel–Crafts reaction with cinnamic, crotonic, and β-chlorocrotonic acids. J. Am. Chem. Soc. 65, 59–60 (1943).

Blanco, R. M. & Guisán, J. M. Stabilization of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzym. Microb. Technol. 11, 360–366 (1989).

Lecina, D., Gilabert, J. F. & Guallar, V. Adaptive simulations, towards interactive protein-ligand modeling. Sci. Rep. 7, 8466 (2017).