Genetic programming for photovoltaic plant output forecasting

Solar Energy - Tập 105 - Trang 264-273 - 2014
M. Russo1, G. Leotta2, P.M. Pugliatti2, G. Gigliucci3
1Dept. of Physics and Astronomy, Univ. of Catania, Italy, Viale Andrea Doria 6, 95125 Catania, Italy
2Enel Ingegneria e Ricerca S.p.A, Zona industriale Passo Martino, 95121 Catania, Italy
3Enel Ingegneria e Ricerca S.p.A, Via Andrea Pisano 120, 56122 Pisa, Italy

Tài liệu tham khảo

Abdallah, 2011, Improving the assessment of {ICESat} water altimetry accuracy accounting for autocorrelation, {ISPRS} J. Photogramm. Rem. Sens., 66, 833, 10.1016/j.isprsjprs.2011.09.002 Anderson, D.P., 2004. Boinc: a system for public-resource computing and storage. In: 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10. Bellman, 1961 Chen, 2011, Online 24-h solar power forecasting based on weather type classification using artificial neural network, Sol. Energy, 10.1016/j.solener.2011.08.027 Ehnberg, 2005, Simulation of global solar radiation based on cloud observations, Sol. Energy, 78, 157, 10.1016/j.solener.2004.08.016 Ente Nazionale Energie Alternative, 2013. <http://www.solaritaly.enea.it>. Hammer, 1999, Short-term forecasting of solar radiation: a statistical approach using satellite data, Sol. Energy, 67, 139, 10.1016/S0038-092X(00)00038-4 Hammer, 2003, Solar energy assessment using remote sensing technologies, Rem. Sens. Environ., 86, 423, 10.1016/S0034-4257(03)00083-X Koza, 1992 Mandal, 2012, Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques, Procedia Comput. Sci., 12, 332, 10.1016/j.procs.2012.09.080 Mathiesen, 2013, A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting, Sol. Energy, 92, 47, 10.1016/j.solener.2013.02.018 Mellit, 2011, FPGA-based implementation of intelligent predictor for global solar irradiation, Part I: Theory and simulation, Expert Syst. Appl., 38, 2668, 10.1016/j.eswa.2010.08.057 Mellit, 2011, Application of artificial neural networks for the prediction of a 20-kWp grid-connected photovoltaic plant power output, Soft Comput. Green Renew. Energy Syst., 261, 10.1007/978-3-642-22176-7_10 National Renewable Energy Laboratory, 2013. <http://www.nrl.gov/rredc>. Pedro, 2012, Assessment of forecasting techniques for solar power production with no exogenous inputs, Sol. Energy, 10.1016/j.solener.2012.04.004 Poli, 2008 Russo, 2000, Genetic fuzzy learning, IEEE Trans. Evol. Comput., 4, 259, 10.1109/4235.873236 Russo, 2001, Distributed fuzzy learning using the MULTISOFT machine, IEEE Trans. Neural Netw., 12, 475, 10.1109/72.925552 Russo, 2012, Towards general purpose neuro-genetic programming socket based formal modeller – (invited paper), vol. 7425, 195 Shi, 2012, Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Trans. Ind. Appl., 48, 1064, 10.1109/TIA.2012.2190816 Stallings, 2006 The National Academy of Engineering. <http://www.engineeringchallenges.org>. Twomey, 1995, Performance measures, consistency, and power for artificial neural network models, Math. Comput. Model., 21, 243, 10.1016/0895-7177(94)00207-5 Voyant, 2012, Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation, Energy, 39, 341, 10.1016/j.energy.2012.01.006 Voyant, 2013, Hybrid methodology for hourly global radiation forecasting in mediterranean area, Renew. Energy, 53, 1, 10.1016/j.renene.2012.10.049