Genetic programming for computational pharmacokinetics in drug discovery and development
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kennedy, T.: Managing the drug discovery/development interface. Drug Discov. Today 2, 436–444 (1997)
Kola, I., Landis, J.: Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004)
Eddershaw, J.P., Beresford, A.P., Bayliss, M.K.: ADME/PK as part of a rational approach to drug discovery. Drug Discov. Today 9, 409–414 (2000)
van de Waterbeemd, H., Gifford, E.: ADMET in silico modeling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192–204 (2003)
Koza, J.R.: Genetic Programming. The MIT Press, Cambridge, MA (1992)
Berezhkovskiy, L.M.: Determination of drug binding to plasma proteins using competitive equilibrium binding to dextran-coated charcoal. J. Pharmacokinet. Pharmacodyn. 33(5), 920–937 (2006)
van de Waterbeemd, H., Rose, S.: In: Wermuth, L.G. (ed.) The Practice of Medicinal Chemistry, 2nd ed., pp. 1367–1385. Academic Press (2003)
David, S., Wishart, Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucl. Acids Res. 34: doi:10.1093/nar/gkj067 (2006)
Yoshida, F., Topliss, J.G.: QSAR model for drug human oral bioavailability. J. Med. Chem. 43, 2575–2585 (2000)
Pintore, M., van de Waterbeemd, H., Piclin, N., ChrTtien, J.R.: Prediction of oral bioavailability by adaptive fuzzy partitioning. Eur. J. Med. Chem. 38(4), 427–31 (2003)
Frohlich, Wegner, J., Sieker, F., Zell, A.: Kernel functions for attributed molecular graphs—a new similarity based approach to ADME prediction in classification and regression. QSAR and Combinatorial Sci. 38(4), 427–431 (2003)
Andrews, C.W., Bennett, L., Yu, L.X.: Predicting human oral bioavailability of a compound: development of a novel quantitative structure–bioavailability relationship. Pharmacol. Res. 17, 639–644 (2000)
Feng, J., Lurati, L., Ouyang, H., Robinson, T., Wang, Y., Yuan, S., Young, S.S.: Predictive toxicology: benchmarking molecular descriptors and statistical methods. J. Chem. Inform. Comput. Sci. 43, 1463–1470 (2003)
Martin, T.M., Young, D.M.: Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method. Chem. Res. Toxicol. 14(10), 1378–1385 (2001)
van de Waterbeemd, H., Smith, D.A, Jones, B.C.: Lipophilicity in PK design:methyl, ethyl, futile. J. Comput. Aided Mol. Design 15, 273–286 (2001)
Colmenarejo, G., Alvarez-Pedraglio, A., Lavandera, J.L.: Chemoinformatic models to predict binding affinities to human serum albumin. J. Med. Chem. 44, 4370–4378 (2001)
Kratochwil, N.A., Huber, W., Muller, F., Kansy, F., Gerber, P.: Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. 64,1355–1374 (2002)
Zupan, J., Gasteiger, P.: Neural Networks in Chemistry and Drug Design: An Introduction, 2nd ed. Wiley (1999)
Greene, N.: Computer systems for the prediction of toxicity: an update. Adv. Drug Deliv. Rev. 54, 417–431 (2002)
Accelrys Inc.: The world leader in cheminformatics for drug development (2006). See www.accelrys.com
Pharma Algorithms Inc.: A company active in the field of ADMET predictions (2006). See www.ap-algorithms.com
Simulation Plus Inc.: A company that use both statistical methods and differential equations based simulations for ADME parameter estimation (2006). See www.simulationsplus.com
Langdon, W.B., Barrett, S.J.: Genetic Programming in data mining for drug discovery. Evolutionary Computing in Data Mining, 211–235 (2004)
Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for human oral bioavailability of drugs. In: Cattolico, M. (ed.) Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 255–262. Seattle, Washington, USA (2006)
Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., Makarenko, A.S., Tanchuk, V.Y., Prokopenko, V.V.: Virtual computational chemistry laboratory—design and description. J. Comput. Aided Mol. Design 19, 453–463 (2005). See www.vcclab.org
Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003, vol. 2610 of LNCS, pp. 71–83. Essex. Springer, Berlin, Heidelberg, New York (2003)
Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, Waikato University, Department of Computer Science, Hamilton, NZ (1998)
Jolliffe, I.T.: Principal Component Analysis, 2nd ed. Springer series in statistics (1999)
Weka: A multi-task machine learning software developed by Waikato University (2006). See www.cs.waikato.ac.nz/ml/weka/
Akaike, H.: Information theory and an extension of maximum likelihood principle. Proceedings of the 2nd International Symposium on Information Theory, Akademia Kiado (1973)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, London (1999)
Smola Alex, J., Scholkopf, B.: A Tutorial on Support Vector Regression. Technical Report Technical Report Series— NC2-TR-1998-030, NeuroCOLT2, (1999)
REACH. Registration, Evaluation and Authorisation of Chemicals, 2006. http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm
Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness clouds and problem hardness in genetic programming. In: Deb, K., et al. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’04, vol. 3103 of Lecture Notes in Computer Science, pp. 690–701. Springer, Berlin, Heidelberg, New York (2004)
Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient. a measure to characterize genetic programming fitness landscapes. In: Collet, P., et al. (ed.) Genetic Programming, 9th European Conference, EuroGP2006, Lecture Notes in Computer Science, LNCS 3905, pp. 178–189. Springer, Berlin, Heidelberg, New York (2006)
Vanneschi, L.: Investigating problem hardness of real life applications. In: Riolo, R., et al. (eds.) Genetic Programming Theory and Practice. To appear (2007)