Các tham số di truyền và tương tác gen loại với môi trường cho các đặc điểm thu hoạch ở ngao Thái Bình Dương (Crassostrea gigas)

Yong Chi1, Qi Li1,2, Chengxun Xu1
1Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
2Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Tóm tắt

Một khía cạnh quan trọng của các chương trình chọn giống chọn lọc là liệu các đặc điểm mong muốn có phản ứng tương tự trong các môi trường khác nhau hay không. Độ lớn của tương tác gen loại với môi trường (G × E) và khả năng di truyền chịu trách nhiệm cho khía cạnh này. Các trại giống thương mại ở phía Bắc Trung Quốc cung cấp các lô giống cho các nông dân nuôi ngao hàng năm, được nuôi trồng ở nhiều khu vực khác nhau. Tuy nhiên, mức độ mà các tương tác G × E ảnh hưởng đến khả năng xác định các dòng ngao chất lượng vẫn chưa được đo lường. Vì vậy, mục tiêu của nghiên cứu này là ước lượng các tham số di truyền và các tương tác G × E cho các đặc điểm thu hoạch ở C. gigas nuôi trồng tại miền Bắc Trung Quốc. Nguyên liệu ngao từ 40 gia đình hầu hết là anh-em (con của 36 con đực và 40 con cái) đã được thử nghiệm tại ba địa điểm nuôi trồng thương mại chính: Rushan, Hungdao và Rongcheng. Chúng tôi đã ghi lại chiều cao vỏ (SH), chiều dài vỏ (SL), chiều rộng vỏ (SW), trọng lượng cá thể (IW), tỷ lệ sống sót (SR), trọng lượng thịt ướt (WMW), tỷ lệ thịt (MR) và hình dạng vỏ (SS) tại thời điểm thu hoạch. So với dòng chứng, dòng được chọn cho thấy sự vượt trội cao về tỷ lệ sống sót tại ba địa điểm. Các ước lượng khả năng di truyền cho các đặc điểm thu hoạch có giá trị từ thấp đến cao ở các địa điểm khác nhau (0.55–0.75 cho SH, 0.25–0.49 cho SL, 0.20–0.33 cho SW, 0.37–0.71 cho IW, 0.10–0.12 cho SR, 0.40–0.52 cho WMW, 0.14–0.34 cho MR và 0.18–0.30 cho SS). Các tương quan di truyền giữa các đặc điểm tăng trưởng có giá trị từ trung bình đến cao và dương, dao động từ 0.52 ± 0.15 (giữa SH và SW tại Huangdao) đến 0.90 ± 0.04 (giữa SH và IW tại Rongcheng). Tuy nhiên, chúng tôi đã tìm thấy các tương quan di truyền có ý nghĩa tiêu cực giữa các đặc điểm tăng trưởng và hình dạng vỏ, một chỉ số mà cân nhắc cả các đặc điểm tăng trưởng và hình dạng vỏ nên được phát triển nhằm cải thiện cả hai cùng lúc. Vì không thể tách biệt kết quả này khỏi tương quan xác định chỉ bằng toán học, kết quả này cần được nghiên cứu thêm. Đáng chú ý, các tương quan di truyền giữa các đặc điểm tăng trưởng và tỷ lệ sống sót là thấp, dao động từ − 0.31 ± 0.17 (giữa SL và SS tại Huangdao) đến 0.14 ± 0.19 (giữa SW và SS tại Rongcheng). Các tương tác G × E được ước lượng dưới dạng các tương quan di truyền giữa cùng một đặc điểm được đo ở các con ngao khác nhau tại ba địa điểm. Các tương tác G × E từ mức trung bình được tìm thấy cho các đặc điểm tăng trưởng (0.45–0.87), các đặc điểm sản lượng thịt (0.40–0.73) và hình dạng vỏ (0.22–0.69), và tương tác G × E yếu được phát hiện cho tỷ lệ sống sót tại thời điểm thu hoạch (0.80–0.86). Nghiên cứu này tiết lộ sự xuất hiện của sự phân hạng lại gen từ yếu đến cao cho các đặc điểm thu hoạch ở C. gigas nuôi trồng tại các địa điểm thương mại khác nhau, cho thấy rằng các tương tác G × E nên được xem xét trong chương trình chọn giống ngao phục vụ nhiều địa điểm.

Từ khóa

#tương tác gen loại với môi trường #Crassostrea gigas #chọn giống #di truyền #đặc điểm thu hoạch

Tài liệu tham khảo

Adams D, Collyer M, Kaliontzopoulou A (2019) Geometric Morphometric Analyses of 2D/3D Landmark Data Alfaro AC, Nguyen TV, Merien F (2019) The complex interactions of Ostreid herpesvirus 1, Vibrio bacteria, environment and host factors in mass mortality outbreaks of Crassostrea gigas Rev Aquac 11:1148–1168 Bai CM, Wang CM, Xia JY, Sun HL, Zhan S, Huang J (2015) Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. J Invertebr Pathol 124:98–106. https://doi.org/10.1016/j.jip.2014.11.007 Bai CM, Morga B, Rosani U, Shi J, Li C, Xin LS, Wang CM (2019) Long-range PCR and high-throughput sequencing of ostreid herpesvirus 1 indicate high genetic diversity and complex evolution process. Virology 526:81–90. https://doi.org/10.1016/j.virol.2018.09.026 Barros J, Velasco LA, Winkler FM (2018) Heritability, genetic correlations and genotype by environment interactions in productive traits of the caribbean scallop, Argopecten nucleus (Mollusca: Bivalvia). Aquaculture 488:39–48. https://doi.org/10.1016/j.aquaculture.2018.01.011 Beattie J, Chew K, Hershberger W (1980) Differential survival of selected strains of Pacific Oysters (Crassostrea gigas) during summer mortality. Proc Natl Shellfish Assoc 70:184–189 BOF (Bureau of Fisheries) (2022) China Fisheries Statistic Yearbook. China Agriculture Press, Beijing Brake JF, Evans S, Langdon C (2003) Is beauty in the eye of the beholder? Development of a simple method to describe desirable shell shape for the Pacific oyster industry. J Shellfish Res 22:767–771 Brown JR, Hartwick EB (1988) Influences of temperature, salinity and available food upon suspended culture of the Pacific oyster, Crassostrea gigas: II. Condition index and survival. Aquaculture 70:253–267. https://doi.org/10.1016/0044-8486(88)90100-7 Callam BR, Allen SK, Frank-Lawale A (2016) Genetic and environmental influence on triploid Crassostrea virginica grown in Chesapeake Bay: growth. Aquaculture 452:97–106. https://doi.org/10.1016/j.aquaculture.2015.10.027 Carriker M (1996) The shell and ligament. The Eastern Oyster Crassostrea Virginica. pp 76–168 Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc Biol Sci 272:1415–1425. https://doi.org/10.1098/rspb.2005.3117 Chen YH, Chen YK, Tao L, Du XX, Dong ZG, Niu DH, Li JL (2022) Genetic parameters and genotype by environment interaction for growth traits of razor clam sinonovacula constricta, from outdoor pond and semi-natural environment. Aquac Rep 24:101173. https://doi.org/10.1016/j.aqrep.2022.101173 Chi Y, Li Q, Liu SK, Kong LF (2021) Genetic parameters of growth and survival in the Pacific oyster Crassostrea gigas Aquac Res 52:282–290. https://doi.org/10.1111/are.14891 Chi Y, Jiang GW, Liang YX, Xu CX, Li Q (2022) Selective breeding for summer survival in Pacific oyster (Crassostrea gigas): genetic parameters and response to selection. Aquaculture 556:738271. https://doi.org/10.1016/j.aquaculture.2022.738271 Dai P, Zheng JB, Luan S, Kong J, Jia YY, Gu ZM (2022) Estimates of heritability and genetic correlation for growth traits at harvest in redclaw crayfish, Cherax quadricarinatus Aquaculture 561:738631. https://doi.org/10.1016/j.aquaculture.2022.738631 de Kantzow M, Hick P, Becker J, Whittington R (2016) Effect of water temperature on mortality of Pacific oysters Crassostrea gigas associated with microvariant ostreid herpesvirus 1 (OsHV-1 µVar). Aquaculture Environ Interact 8:419–428. https://doi.org/10.3354/aei00186 De Melo CMR, Durland E, Langdon C (2016) Improvements in desirable traits of the Pacific oyster, Crassostrea gigas, as a result of five generations of selection on the West Coast, USA. Aquaculture 460:105–115. https://doi.org/10.1016/j.aquaculture.2016.04.017 De Melo CMR, Morvezen R, Durland E, Langdon C (2018) Genetic by environment interactions for harvest traits of the Pacific oyster Crassostrea gigas (Thunberg) across different environments on the west coast, USA. J Shellfish Res 37:49–61. https://doi.org/10.2983/035.037.0104 De Melo CMR, Divilov K, Schoolfield B, Langdon C (2019) Selection of group and individual traits of Pacific oysters (Crassostrea gigas) on the West Coast, US. Aquaculture 512:734389. https://doi.org/10.1016/j.aquaculture.2019.734389 De Melo CMR, Divilov K, Durland E, Schoolfield B, Davis J, Carnegie RB, Reece KS, Evans F, Langdon C (2021) Introduction and evaluation on the US West Coast of a new strain (Midori) of Pacific oyster (Crassostrea gigas) collected from the Ariake Sea, southern Japan. Aquaculture 531:735970. https://doi.org/10.1016/j.aquaculture.2020.735970 de Oliveira CAL, Ribeiro RP, Yoshida GM, Kunita NM, Rizzato GS (2016) Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for Nile tilapia Oreochromis niloticus in Brazil. J Appl Genet 57:487–493. https://doi.org/10.1007/s13353-016-0338-5 Dégremont L, Bédier E, Soletchnik P, Ropert M, Huvet A, Moal J, Samain JP, Boudry P (2005) Relative importance of family, site and field placement timing on survival, growth and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas). Aquaculture 249:213–229. https://doi.org/10.1016/j.aquaculture.2005.03.046 Dégremont L, Ernande B, Bédier E, Boudry P (2007) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). I. Estimation of genetic parameters for survival and growth. Aquaculture 262:41–53. https://doi.org/10.1016/j.aquaculture.2006.10.025 Dégremont L, Bédier E, Boudry P (2010) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield. Aquaculture 299:21–29. https://doi.org/10.1016/j.aquaculture.2009.11.017 Dégremont L, Nourry M, Maurouard E (2015) Mass selection for survival and resistance to OsHV-1 infection in Crassostrea gigas spat in field conditions: response to selection after four generations. Aquaculture 446:111–121. https://doi.org/10.1016/j.aquaculture.2015.04.029 Divilov K, Schoolfield B, Mancilla Cortez D, Wang X, Fleener GB, Jin L, Langdon C (2021) Genetic improvement of survival in Pacific oysters to the Tomales Bay strain of OsHV-1 over two cycles of selection. Aquaculture 543:737020. https://doi.org/10.1016/j.aquaculture.2021.737020 Domingos JA, Goldsbury JA, Gomes GB, Smith BG, Tomlinson C, Bade T, Jerry DR (2021) Genotype by environment interactions of harvest growth traits for barramundi (Lates calcarifer) commercially farmed in marine vs. freshwater conditions. Aquaculture 532:735989. https://doi.org/10.1016/j.aquaculture.2020.735989 Dupont-Nivet M, Vandeputte M, Chevassus B (2002) Optimization of factorial mating designs for inference on heritability in fish species. Aquaculture 204:361–370. https://doi.org/10.1016/S0044-8486(01)00839-0 Ernande B, Clobert J, McCombie H, Boudry P (2003) Genetic polymorphism and trade-offs in the early life-history strategy of the Pacific oyster, Crassostrea gigas (Thunberg, 1795): a quantitative genetic study. J Evol Biol 16:399–414. https://doi.org/10.1046/j.1420-9101.2003.00543.x Evans S, Langdon C (2006) Effects of genotype × environment interactions on the selection of broadly adapted Pacific oysters (Crassostrea gigas). Aquaculture 261:522–534. https://doi.org/10.1016/j.aquaculture.2006.07.022 Falconer DS (1990) Selection in different environments: effects on environmental sensitivity (reaction norm) and on mean performance. Genet Res 56:57–70. https://doi.org/10.1017/S0016672300028883 Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd., London Famula TR (1990) The equivalence of two linear methods for the improvement of traits expressed as ratios. TAG Theor Appl Genet 79:853–856. https://doi.org/10.1007/BF00224256 Farías WJ, Winkler FM, Brokordt KB (2017) Genotype by environment interactions, heritabilities and genetic correlations for productive traits of Haliotis rufescens Aquaculture 473:407–416. https://doi.org/10.1016/j.aquaculture.2017.02.030 Gao FX, Li Q, Liu WG, Yu RH, Chen WM, Shirasu K (2006) Studies on community structure and cell abundance of phytoplankton in culture areas of Rushan Bay. Period Ocean Univ China 36:93–98 (in Chinese) Garcia C, Thébault A, Dégremont L, Arzul I, Miossec L, Robert M, Chollet B, François C, Joly JP, Ferrand S, Kerdudou N, Renault T (2011) Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006. Vet Res 42:73. https://doi.org/10.1186/1297-9716-42-73 Ghribi F, Boussoufa D, Aouini F, Bejaoui S, Chetoui I, Rabeh I, Cafsi ME (2018) Seasonal variation of biochemical composition of Noah’s ark shells (Arca noae L. 1758) in a tunisian coastal lagoon in relation to its reproductive cycle and environmental conditions. Aquat Living Resour 31:1–15. https://doi.org/10.1051/alr/2018002 Gilmour A, Gogel B, Cullis B, Thompson R (2009) ASReml user guide, release 3.0. VSN Int. Ltd, Hemel Hempstead Gjedrem T (2005) Genotype-Environment Interaction. In: Gjedrem T (ed) Selection and breeding programs in aquaculture. Springer, Dordrecht, pp 232–242 Gjedrem T, Baranski M (2009) Selective breeding in aquaculture: an introduction. Springer, Dordrecht Gunsett FC (1987) Merit of utilizing the heritability of a ratio to predict the genetic change of a ratio. J Anim Sci 65:936–942. https://doi.org/10.2527/jas1987.654936x Guo XM (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259. https://doi.org/10.1111/j.1753-5131.2009.01014.x Haffray P, Bugeon J, Rivard Q, Quittet B, Puyo S, Allamelou JM, Dupont-Nivet M (2013) Genetic parameters of in-vivo prediction of carcass, head, and fillet yields by internal ultrasound and 2D external imagery in large rainbow trout (Oncorhynchus mykiss). Aquaculture 410–411:236–244. https://doi.org/10.1016/j.aquaculture.2013.06.016 Han ZQ, Li Q, Liu SK, Kong LF (2020) Crossbreeding of three different shell color lines in the Pacific oyster reveals high heterosis for survival but low heterosis for growth. Aquaculture 529:735621. https://doi.org/10.1016/j.aquaculture.2020.735621 Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101. https://doi.org/10.1016/S0169-5347(99)01595-5 Hu YM, Li Q, Xu CX, Liu SK, Kong LF, Yu H (2022) Response to selection for growth in successive mass selected generations of Iwagaki oyster Crassostrea nippona. Aquaculture 560:738575. https://doi.org/10.1016/j.aquaculture.2022.738575 Jarayabhand P, Thavornyutikarn M (1995) Realized heritability estimation on growth rate of oyster, Saccostrea cucullata Born, 1778. Aquaculture 138:111–118. https://doi.org/10.1016/0044-8486(95)01080-7 Jiang GW, Li Q, Xu CX (2022) Growth, survival and gonad development of two new types of reciprocal triploid hybrids between Crassostrea gigas and C. angulata Aquaculture 559:738451. https://doi.org/10.1016/j.aquaculture.2022.738451 Juárez OE, Escobedo-Fregoso C, Arredondo-Espinoza R, Ibarra AM (2021) Development of SNP markers for identification of thermo-resistant families of the Pacific oyster Crassostrea gigas based on RNA-seq. Aquaculture 539:736618 Kingsley-Smith PR, Harwell HD, Kellogg ML, Allen SM, Allen SK, Meritt DW, Luckenbach MW (2009) Survival and growth of triploid Crassostrea virginica (Gmelin, 1791) and C. ariakensis (Fujita, 1913) in bottom environments of Chesapeake Bay: implications for an introduction. J Shellfish Res 28:169–184. https://doi.org/10.2983/035.028.0201 Kube P, Cunningham M, Dominik S, Parkinson S, Finn B, Henshall J, Hamilton M (2011) Enhancement of the Pacific Oyster Selective Breeding Program. FRDC and Seafood CRC Project 2006/227, Hobart, Australia Kube P, Dove M, Cunningham M, Kirkland P, Gu X, Hick P, O’Connor W, Elliott N (2018) Genetic selection for resistance to Pacific oyster mortality syndrome. In: CSIRO Marine and Atmospheric Research, FRDC and Seafood CRC Project 2012/760, Hobart, Australia Kvingedal R, Evans BS, Lind CE, Taylor JJU, Dupont-Nivet M, Jerry DR (2010) Population and family growth response to different rearing location, heritability estimates and genotype × environment interaction in the silver-lip pearl oyster (Pinctada maxima). Aquaculture 304:1–6. https://doi.org/10.1016/j.aquaculture.2010.02.035 Langdon C, Evans F, Jacobson D, Blouin M (2003) Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture 220:227–244. https://doi.org/10.1016/S0044-8486(02)00621-X Lannan JE (1972) Estimating heritability for predicting response to selection for the Pacific oyster, Crassostrea gigas. Proc Natl Shellfish Assoc 62:62–66 Lebata-Ramos MJ, Dionela CS, Novilla SR, Sibonga RC, Solis EF, Mediavilla JP (2021) Growth and survival of oyster Crassostrea iredalei (Faustino, 1932): a comparison of wild and hatchery-bred spat in grow-out culture. Aquaculture 534:736310. https://doi.org/10.1016/j.aquaculture.2020.736310 Li Q, Wang QZ, Liu SK, Kong LF (2011) Selection response and realized heritability for growth in three stocks of the Pacific oyster Crassostrea gigas Fish Sci 77:643–648. https://doi.org/10.1007/s12562-011-0369-0 Li YZ, Yang YM, Zheng WW, Cheng JY (2019) Genetic parameters and genotype by environment interactions for growth traits and survival of olive flounder (Paralichthys olivaceus) in recirculating aquaculture system and flow-through system. Aquaculture 510:56–60. https://doi.org/10.1016/j.aquaculture.2019.05.043 Li X, Shi CY, Yang B, Li Q, Liu SK (2023) High temperature aggravates mortalities of the Pacific oyster (Crassostrea gigas) infected with Vibrio: a perspective from homeostasis of digestive microbiota and immune response. Aquaculture 568:739309. https://doi.org/10.1016/j.aquaculture.2023.739309 Lin CY, Aggrey SE (2013) Incorporation of economic values into the component traits of a ratio: feed efficiency. Poult Sci 92:916–922. https://doi.org/10.3382/ps.2012-02688 Luan S, Luo K, Chai Z, Cao BX, Meng XH, Lu X, Liu N, Xu SY, Kong J (2015) An analysis of indirect genetic effects on adult body weight of the Pacific white shrimp Litopenaeus vannamei at low rearing density. Genet Selection Evol 47:1–8. https://doi.org/10.1186/s12711-015-0164-y Lutz RA, Incze LS, Porter B, Stotz K (1980) Seasonal variation in the condition of raft-cultivated mussels, Mytilus edulis L. Proc World Maricult Soc 11:262–268 Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland Mallet AL, Haley LE (1983) Growth rate and survival in pure population matings and crosses of the oyster Crassostrea virginica Can J Fish Aquat Sci 40:948–954 McCarty AJ, McFarland K, Small J, Allen SK, Plough LV (2020) Heritability of acute low salinity survival in the eastern oyster (Crassostrea virginica). Aquaculture 529:735649. https://doi.org/10.1016/j.aquaculture.2020.735649 Mizuta DD, Wikfors GH (2019) Seeking the perfect oyster shell: a brief review of current knowledge. Rev Aquac 11:586–602. https://doi.org/10.1111/raq.12247 Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant population. Crit Rev Plant Sci 10:235–322. https://doi.org/10.1080/07352689109382313 Okumuş İ, Stirling HP (1998) Seasonal variations in the meat weight, condition index and biochemical composition of mussels (Mytilus edulis L) in suspended culture in two scottish sea lochs. Aquaculture 159:249–261. https://doi.org/10.1016/S0044-8486(97)00206-8 Omasaki SK, Charo-Karisa H, Kahi AK, Komen H (2016) Genotype by environment interaction for harvest weight, growth rate and shape between monosex and mixed sex Nile tilapia (Oreochromis niloticus). Aquaculture 458:75–81. https://doi.org/10.1016/j.aquaculture.2016.02.033 Pearson K (1897) Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organ. Proc R Soc Lond 60:489–498 Ponzoni RW, Nguyen NH, Khaw HL, Ninh NH (2008) Accounting for genotype by environment interaction in economic appraisal of genetic improvement programs in common carp Cyprinus carpio Aquaculture 285:47–55. https://doi.org/10.1016/j.aquaculture.2008.08.012 Proestou DA, Vinyard BT, Corbett RJ, Piesz J, Allen SK, Small JM, Gomez-Chiarri M (2016) Performance of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern US estuaries. Aquaculture 464:17–27. https://doi.org/10.1016/j.aquaculture.2016.06.012 Rauw WM, Kanis E, Noordhuizen-Stassen E, Grommers FJ (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56:15–33. https://doi.org/10.1016/S0301-6226(98)00147-X Rawson PD, Hilbish TJ (1991) Genotype-environment interaction for juvenile growth in the hard clam Mercenaria mercenaria Evolution 45:1924–1935. https://doi.org/10.1111/j.1558-5646.1991.tb02697.x Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15:469–485 Sae-Lim P (2013) One size fits all?: optimization of rainbow trout breeding program under diverse preferences and genotype-by-environment interaction. Wageningen University and Research Sae-Lim P, Gjerde B, Nielsen HM, Mulder H, Kause A (2015) A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev Aquac 7:1–25. https://doi.org/10.1111/raq.12098 Srimai W, Koonawootrittriron S, Manee-aphai W, Chatchaiphan S, Koolboon U, Na-Nakorn U (2019) Genetic parameters and genotype-environment interaction for growth traits of north african catfish, Clarias gariepinus (Burchell, 1822). Aquaculture 501:104–110. https://doi.org/10.1016/j.aquaculture.2018.10.064 Swan AA, Thompson PA, Ward RD (2007) Genotype × environment interactions for weight in Pacific oysters (Crassostrea gigas) on five australian farms. Aquaculture 265:91–101. https://doi.org/10.1016/j.aquaculture.2007.01.036 Vandeputte M, Fraslin C, Haffray P, Bestin A, Allal F, Kocour M, Dupont-Nivet M (2020) How to genetically increase fillet yield in fish: relevant genetic parameters and methods to predict genetic gain. Aquaculture 519:734877. https://doi.org/10.1016/j.aquaculture.2019.734877 Vu SV, Knibb W, Nguyen NT, Vu IV, O’Connor W, Dove M, Nguyen NH (2020) First breeding program of the portuguese oyster Crassostrea angulata demonstrated significant selection response in traits of economic importance. Aquaculture 518:734664. https://doi.org/10.1016/j.aquaculture.2019.734664 Ward RD, Thompson PA, Appleyard SA, Swan AA, Kube PD (2005) Sustainable genetic improvement of Pacific Oysters in Tasmania and South Australia. Fisheries research development corporation final report Canberra, Australia Yang B, Zhai SY, Li X, Tian J, Li Q, Shan HW, Liu SK (2021) Identification of Vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 535:736363. https://doi.org/10.1016/j.aquaculture.2021.736363 Zhang JX, Li Q, Xu CX, Han ZQ (2019) Response to selection for growth in three selected strains of the Pacific oyster Crassostrea gigas Aquaculture 503:34–39. https://doi.org/10.1016/j.aquaculture.2018.12.076