Lập bản đồ di truyền của hiện tượng vô sinh đực và các QTL liên quan đến khả năng sinh phấn trong cây triticale với tế bào chất Triticum timopheevii

Journal of Applied Genetics - Tập 62 - Trang 59-71 - 2020
Marzena Wasiak1, Agnieszka Niedziela1, Henryk Woś2, Mirosław Pojmaj3, Piotr Tomasz Bednarek1
1Plant Breeding and Acclimatization Institute – NRI, Radzikow, Poland
2Breeding Department Borowo, Plant Breeding Company-Strzelce, Czempin, Poland
3Breeding Department Laski, Danko Plant Breeding Company-Choryń, Laski, Poland

Tóm tắt

Hiện tượng vô sinh đực do tế bào chất (CMS) được ứng dụng rộng rãi trong sản xuất hạt giống lai thương mại ở các loài cây trồng quan trọng về kinh tế, bao gồm lúa mạch, lúa mì, ngô, gạo, cao lương, bông, củ cải đường và nhiều loại rau khác. Mặc dù đã có một số thành công thương mại, nhưng vẫn còn ít thông tin về các vị trí tính trạng liên quan (QTL) chịu trách nhiệm cho đặc điểm này trong trường hợp tảo triticale với tế bào chất Triticum timopheevii (Tt). Dân số bản đồ dòng tái tổ hợp cách (RIL) F6 với 182 cá thể được tạo ra từ phép lai giữa các cây individual đại diện cho dòng HT352 và giống Borwo đã được sử dụng để xây dựng bản đồ di truyền bằng cách sử dụng các dấu hiệu SNP và xác định các QTL liên quan đến khả năng sinh phấn trong tảo triticale với CMS Tt. Các kiểu hình của các dòng F1 thu được từ sự giao phối của HT352 (Tt) với HT352 (người duy trì) × Borwo đã được xác định thông qua việc đánh giá số lượng hạt F2 trên mỗi bông. Một bản đồ di truyền với 21 nhóm liên kết bao gồm 29.737 dấu hiệu và trải dài trên khoảng cách 2549 cM. Các phương pháp lập bản đồ khoảng (CIM) và đa biến (MIM) đã cho ra kết quả tương đương. Các QTL đơn được lập bản đồ trên các nhiễm sắc thể 1A, 1B, 2A, 2R, 3B, 3R, 4B và 5B, trong khi các nhiễm sắc thể 5R và 6B chia sẻ lần lượt 3 và 2 QTL. Các QTL có điểm LOD cao nhất được lập bản đồ trên các nhiễm sắc thể 5R, 3R, 1B và 4B; tuy nhiên, QRft-5R.3 có biến thiên giải thích cao nhất cho đặc điểm này.

Từ khóa

#vô sinh đực #QTL #tảo triticale #tế bào chất #SNP #bản đồ di truyền

Tài liệu tham khảo

Ahmed TA, Tsujimoto H, Sasakuma T (2001) QTL analysis of fertility-restoration against cytoplasmic male sterility in wheat. Genes Genet Syst 76:33–38 Alheit KV, Reif JC, Maurer HP, Hahn V, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380 Alheit KV, Mauer HP, Reif JC, Tucker MR, Hahn V, Weissmann EA, Würschum T (2012) Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (×Triticosecale Wittmack). BMC Genomics 13:235 Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, Twardziok SO, Hackauf B, Gordillo A, Wilde P (2017) Towards a whole-genome sequence for rye (Secale cereale L.). Plant J 89:853–869 Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome - genetic diversity and mapping. BMC Genomics 10:578 Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 30:44–52 Curtis CA, Lukaszewski AJ (1993) Localization of genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm. Plant Breed 111:106–112 DArT-P/L DAT (2016) A consensus map of wheat V 4.0 (“The Map). https://www.diversityarrays.com/technology-and-resources/genetic-maps. Accessed 20 June 2016 FAOSTAT (2018) http://www.fao.org/faostat/en/#data/QC. Accessed 26 January 2020 Geiger H, Miedaner T (2009) Rye breeding. Cereals 3:157–181 Geiger HH, Morgenstern K (1975) Applied genetic studies on cytoplasmic pollen sterility in winter rye. Theor Appl Genet 46:269–276 Geiger H, Yuan Y, Miedaner T, Wilde P (1995) Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. Fortschritte der Pflanzenzuechtung 18:7–18 González JM, Muñiz LM, Jouve N (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome 48:999–1009 Góral H (2002) Production of triticale (X Triticosecale Wittm.) hybrid seeds using the sterilizing cytoplasm of Triticum timopheevi. Cereal Res Commun 30:31–38 Góral H (2004) Effect of distance from the pollen source on seed set in male sterile triticale lines. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 231:157-164 (Abstract in English) Góral H (2013) Male fertility of winter triticale depending on the cytoplasm and male parent. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 269:15-20 (Abstract in English) Góral H, Spiss L (1998) Effect of sterile cytoplasm of T. timopheevi on agronomic traits of winter triticale hybrids. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 205/206:157–162 Góral H, Warzecha T, Stojałowski S, Pojmaj M, Kurleto D, Trąbka A, Spiss L (2006) Stability of male sterylity and fertility restoration in cms T. timopheevi system in triticale. Folia Universitatis Agriculturae Stetinensis. Agricultura 247(100):55–62 Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177 Kiss A (1971) Origin of the preliminary released Hungarian hexaploid varieties no. 57 and 64. Wheat Info Serv 32:20–22 Kojima T, Tsujimoto H, Ogihara Y (1997) High-resolution RFLP mapping of the fertility restoration (Rf3) gene against Triticum timopheevi cytoplasm located on chromosome 1BS of common wheat. Genes Genet Syst 72:353–359 Kuleung C, Baenzinger PS, Kachman SD, Dweikat I (2006) Evaluating the genetic diversity of triricale with wheat and rye SSR markers. Crop Sci 46:1692–1700 Li H, Hearne S, Bänziger M, Li Z, Wang J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105:257–267 Losert D, Maurer HP, Marulanda JJ, Würschum T (2017) Phenotypic and genotypic analyses of diversity and breeding progress in European triticale (× Triticosecale Wittmack). Plant Breed 136:18–27 Luciano Da Costa ES, Wang S, Zeng Z-B (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol 871:75–119 Ma Z-Q, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143 Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N'Diaye A, Xu S, Tuberosa R (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663 Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of a and B wheat genomes. Theor Appl Genet 125:1619–1638 Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vránad J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schönc CC, Doležel J, Bauer E, Mayer KFX, Stein N (2013) Reticulate evolution of the Rye genome. Plant Cell 25:3685–3698 Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829 Miedaner T, Glass C, Dreyer F, Wilde P, Wortmann H, Geiger HH (2000) Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233 Milczarski P, Bolibok-Bragoszewska H, Myśków B, Rakoczy-Trojanowska M (2011) A high density consensus map of Rye (Secale cereale L.) based on DArT markers. PLoS One 6:e28495 Milczarski P, Hanek M, Tyrka M, Stojałowski S (2016) The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J Appl Genet 57:439–451 Myer RO, Barnett RD (2000) Triticale grain in swine diets. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS. https://ufdcimages.uflib.ufl.edu/IR/00/00/42/45/00001/AN03200.pdf Niedziela A, Bednarek PT, Labudda M, Mankowski DR, Aniol A (2014) Genetic mapping of a 7R Al tolerance QTL in triticale (x Triticosecale Wittmack). J Appl Genet 55:1–14 Niedziela A, Mankowski D, Bednarek PT (2015) Diversity arrays technology-based PCR markers for marker assisted selection of aluminum tolerance in triticale (x Triticosecale Wittmack). Mol Breed 35:209 Niedziela A, Orlowska R, Machczynska J, Bednarek PT (2016) The genetic diversity of triticale genotypes involved in polish breeding programs. Springerplus 5:355 Pena R (2004) Food uses of triticale. In: Mergoum M, Gómez-Macpherson H (eds) Triticale Improvement and Production. Food and Agriculture Organisation of the United Nations, Rome, pp 37–48 Ronin Y, Minkov D, Mester D, Akhunov E, Korol A (2015) Building ultra-dense genetic maps in the presence of genotyping errors and missing data. Advances in wheat genetics: from genome to field. Springer, Tokyo, pp 127–133 Sánchez-Sevilla JF, Horvath A, Botella MA, Gaston A, Folta K, Kilian A, Denoyes B, Amaya I (2015) Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the Octoploid cultivated strawberry (Fragaria × ananassa). PLoS One 10:e0144960 Seal AG, Bennet MD (2011) The rye genome in winter hexaploid triticale. Genome 23:647–653 Silva Lda C, Wang S, Zeng ZB (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using windows QTL cartographer. Methods Mol Biol 871:75–119 Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York Stojałowski S, Łapiński M, Masojć P (2004) RAPD markers linked with restorer genes for the C-source of cytoplasmic male sterility in rye (Secale cereale L). Plant Breed 123:428–433 Stojałowski SA, Milczarski P, Hanek M, Bolibok-Bragoszewska H, Myśków B, Kilian A, Rakoczy-Trojanowska M (2011) DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.). J Appl Genet 52:313–318 Stojałowski S, Bobrowska A, Hanek M, Myśków B (2013) The importance of chromosomes from the sixth homeologic group in the restoration of male fertility in winter triticale with Triticum timopheevii cytoplasm. J Appl Genet 54:179–184 Tams SH, Melchinger AE, Bauer E (2005) Genetic similarity among European winter triticale elite germplasms assessed with AFLP and comparison with SSR and pedigree data. Plant Breed 124:154–160 Tyrka M, Bednarek PT, Kilian A, Wedzony M, Hura T, Bauer E (2011) Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 54:391–401 Tyrka M, Tyrka D, Wędzony M (2015) Genetic map of Triticale integrating microsatellite, DArT and SNP markers. PLoS One 10(12):e0145714 Veyrieras J-B, Camus-Kulandaivelu L, Gouesnard B, Manicacci D, Charcosset A (2007) Bridging genomics and genetic diversity: Linkage disequilibrium structure and association mapping in maize and other cereals. Crop Sci 47(Suppl Dec):60–71 Wilson A (1875) On wheat and rye hybrids. Trans Proc Bot Soc 12:286–288 Würschum T, Leiser WL, Weissmann S, Maurer HP (2017) Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. Theor Appl Genet 130:1253–1266 www.wheatgenome.org (2018) International Wheat Genome Sequencing Consortium. Generating a high quality genome sequence of bread wheat. Accessed 24 Sept 2018 XlStat (2019) https://www.xlstat.com/en/solutions/pre-mium. p Accessed 10 December 2018