Bằng chứng di truyền cho chức năng của CA lạp thể trong Pyropia yezoensis: giảm CCM nhưng gia tăng tích lũy tinh bột

Advanced Biotechnology - Tập 2 Số 2
Baoyu Zhang, Xueying Liu, Xiujun Xie, Huan Li, Zhizhuo Shao, Zhi‐Yan Du, Guangce Wang

Tóm tắt

Tóm tắt

Để phản ứng với môi trường lồi lõm thay đổi, macroalgae lồi lõm đã tiến hóa ra các cơ chế sử dụng CO2 phức tạp. Tuy nhiên, kiến thức của chúng ta về cơ chế tập trung CO2 (CCM) của macroalgae còn hạn chế. Carbonic anhydrase (CA), một thành phần chính của CCM, đóng vai trò thiết yếu trong nhiều phản ứng sinh lý ở các loài khác nhau. Trong khi nhiều gen mã hóa CA trong bộ gen Pyropia yezoensis, chức năng chính xác của CA cụ thể trong P. yezoensis vẫn chưa rõ ràng. Để khám phá chức năng đặc biệt của CA lạp thể trong macroalgae lồi lõm, chúng tôi đã tạo ra các đột biến giảm biểu hiện βCA1 lạp thể của P. yezoensis thông qua giao thoa RNA, và các đột biến Pyβca1i (sau đây gọi là ca1i) cho thấy diện tích lá và sinh khối tổng thể giảm đáng kể, cũng như giảm protein hòa tan và hàm lượng axit béo không bão hòa dưới các điều kiện DIC khác nhau. Tuy nhiên, đột biến ca1i cho thấy hàm lượng tinh bột tương đối cao hơn so với kiểu hình hoang dã. Hoạt động của các enzyme tham gia vào chu trình Calvin, quá trình quang hô hấp, con đường pentose-phosphate và tổng hợp tinh bột floridean của P. yezoensis cho thấy một con đường tích lũy tinh bột hiệu quả sau khi can thiệp βCA1. Tất cả các kết quả cho thấy rằng hoạt động giảm của PyβCA1 làm suy yếu CCM và sự phát triển của thalli của P. yezoensis, nhưng kích thích tích lũy tinh bột trong tế bào chất thông qua phản hồi tới con đường quang hô hấp và con đường pentose phosphate để bổ sung các trung gian cho chu trình Calvin. Nghiên cứu này lần đầu tiên khám phá chức năng cụ thể của CA lạp thể trong macroalgae lồi lõm bằng công nghệ di truyền. Các kết quả cung cấp cái nhìn quý giá về các cơ chế thích ứng của macroalgae lồi lõm đối với môi trường của chúng.

Từ khóa


Tài liệu tham khảo

Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. Plant Physiol. 2022;190(3):1609–27. https://doi.org/10.1093/plphys/kiac373.

Badger MR, Price GD. The Role of Carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1994;45:369–92.

Bates PD, Jewell JB, Browse J. Rapid separation of developing Arabidopsis seeds from siliques for RNA or metabolite analysis. Plant Methods. 2013;9:9. https://doi.org/10.1186/1746-4811-9-9.

Bauwe H, Chollet R. Kinetic Properties of Phosphoenolpyruvate Carboxylase from C3, C4, and C3–C4 Intermediate Species of Flaveria (Asteraceae). Plant Physiol. 1986;82(3):695–9. https://doi.org/10.1104/pp.82.3.695.

Blouin N, Calder BL, Perkins B, Brauley SH. Sensory and fatty acid analysis of two Atalantic species of Porphyra (Rhodophyta). J Appl Phycol. 2006;18:79–85.

Brawley SH, Blouin NA, Ficko-Blean E, et al. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci USA. 2017;114(31):E6361–70.

Chen H, Chu J, Chen J, Luo Q, Wang H, et al. Insights into the ancient adaptation to intertidal environments by red algae based on a genomic and multiomics investigation of Neoporphyra haitanensis. Mol Biol Evol. 2022;39(1):msab315. https://doi.org/10.1093/molbev/msab315.

Crawford JD, Cousins AB. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance. J Exp Bot. 2022;73(3):927–38. https://doi.org/10.1093/jxb/erab464.

FAO. 2019. FAO Yearbook of Fishery and Aquaculture Statistics. http://www.fao.org/fishery/static/Yearbook/YB2017_USBcard/index.htm.

Fernández PA, Roleda MY, Rautenberger R, Hurd CL. Carbonic anhydrase activity in seaweeds: overview and recommendations for measuring activity with an electrometric method, using Macrocystis pyrifera as a model species. Mar Biol. 2018;165(5):88.

Fleurence J. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Technol. 1999;10:25–8.

Flügel F, Timm S, Arrivault S, Florian A, Stitt M, et al. The photorespiratory metabolite 2-Phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. The Plant Cell. 2017;29(10):2537–51. https://doi.org/10.1105/tpc.17.00256.

Fünfgeld MMFF, Wang W, Ishihara H, Arrivault S, Feil R, Smith AM, Stitt M, et al. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. Nature Plants. 2022;8:574–82. https://doi.org/10.1038/s41477-022-01140-y.

Gee CW, Niyogi KK. The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc Natl Acad Sci USA. 2017;114:4537–42.

Hines KM, Chaudhari V, Edgeworth KN, Owens TG, Hanson MR. Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proc Natl Acad Sci USA. 2021;118: e2107425118.

Hirata R, Uji T, Fukuda S, Mizuta H, Fujiyama A, Tabata S, Saga N. Development of a nuclear transformation system with a codon-optimized selection marker and reporter genes in Pyropia yezoensis (Rhodophyta). J Appl Phycol. 2014;26:1863–68.

Huan L, Wang C, Gao S, He L, Lu X, Wang X, Liu X, Wang G. Preliminary comparison of atmospheric CO2 enhancement to photosynthesis of Pyropia yezoensis (Bangiales, Rhodophyta) leafy thalli and filamentous thalli: Carbon uptake after CO2 enhancement. Phycol Res. 2018;66:117–26.

Ignatova L, Rudenko N, Zhurikova E, Borisova-Mubaraksh M, Ivanov B. Carbonic anhydrases in photosynthesizing cells of C3 higher plants. Metabolites. 2019;9(4):73. https://doi.org/10.3390/metabo9040073.

Karlsson J. A novel alpha -type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 1998;17:1208–16.

Levey M, Timm S, Metler-Altmann T, Luca Borghi G, Koczor M, Arrivault S, Pm Weber A, Bauwe H, Gowik U, Westhoff P. Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis. J Exp Bot. 2019;70:575–87.

Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell. 2017;171(133–47): e14.

Markelova AG, Sinetova MP, Kupriyanova EV, Pronina NA. Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii. Russ J Plant Physiol. 2009;56:761–8.

Martinez-Garcia M, van der Maarel MJEC. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express. 2016;6(1):71. https://doi.org/10.1186/s13568-016-0244-6.

Millero FJ, Zhang JZ, Lee K, Campbell DM. Titration alkalinity of seawater. Marine Chemistry. 1993;44:153–65.

Moroney JV, Bartlett SG, Samuelsson G. Carbonic anhydrases in plants and algae. Plant, Cell and Environ. 2001;2:141–53.

Moulin P, Andría JR, Axelsson L, Mercado JM. Different mechanisms of inorganic carbon acquisition in red macroalgae (Rhodophyta) revealed by the use of TRIS buffer. Aquatc Bot. 2011;95(1):31–8.

Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant Biotin-Containing Carboxylases Arch Biochem Biophy. 2003;414:211–22.

Noda H. Health benefits and nutritional properties of nori. J Appl Phycol. 1993;5:255–8.

Patron NJ, Keeling PJ. Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol. 2005;41(6):1131–41.

Pierrot D, Lewis E, Wallace DWR. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC−105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006)

Raven JA. Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria. Phycologia. 1995;34(2):93–101.

Rioux L-E, Turgeon SL. Seaweed carbohydrates. In: Tiwari B, Troy D, editors. Seaweed sustainability: food and non-food applications. Amsterdam: Elsevier; 2015. p. 141–92.

Shao Z, Xie X, Liu X, Zheng Z, Huan L, Zhang B, Wang G. Overexpression of mitochondrial γCAL1 reveal a unique photoprotection mechanism in intertidal resurrection red algae through decreasing photorespiration. Algal Res. 2022;66:102766.

Viola R, Nyvall P, Pedersén M. The unique features of starch metabolism in red algae. Proc R Soc Lond B. 2001;268:1417–22.

Von Caemmerer S, Quinn V, Hancock NC, Price GD, Furbank RT, Ludwig M. Carbonic anhydrase and C4 photosynthesis: a transgenic analysis. Plant Cell Environ. 2004;6:697–703.

Wang S. The ultrastructure of Porphyra yezoensis. In: Wang S, Pei L, Duan D, editors. The ultrastructure of common red seaweeds in China. Ningbo Publishing Press, Zhejiang: China; 2004. p. 6–9.

Wang Y, Stessman FJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting: how Chlamydomonas works against the gradient. Plant J. 2015;82:429–48.

Wang D, Yu X, Xu K, Bi G, Cao M, Zelzion E, Fu C, Sun P, Liu Y, Kong F, et al. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat Commun. 2020;11:4028.

Wei L, Xin Y, Wang Q, Yang J, Hu H, Xu J. RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica. Plant J. 2017;89:1236–50.

Wei L, El Hajjami M, Shen C, You W, Lu Y, Li J, Jing X, Hu Q, Zhou W, Poetsch A, et al. Transcriptomic and proteomic responses to very low CO2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica. Biotechnol Biofuels. 2019;12:168.

Wu S, Huang A, Zhang B, Huan L, Zhao P, Lin A, Wang G. Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration. Biotechnol Biofuels. 2015;8:78. https://doi.org/10.1186/s13068-015-0262-7.

Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H. CO2- dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in chlamydomonas reinhardtii. Plant Physiol. 2021;188:1081–94.

Young JN, Rickaby REM, Kapralov MV, Filatov DA. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Philos Trans R Soc Lond B Biol Sci. 2012;367:483–92.

Yu Y, Jia X, Wang W, Jin Y, Liu W, Wang D, Mao Y, Xie C, Liu T. Floridean starch and floridoside metabolic pathways of Neoporphyra haitanensis and their regulatory mechanism under continuous darkness. Mar Drugs. 2021;19(12):1–19.

Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. Front Plant Sci. 2013;4:450. https://doi.org/10.3389/fpls.2013.00450.

Zeebe RE. On the molecular diffusion coefficients of dissolved CO2, HCO3−, and CO32− and their dependence on isotopic mass. Geochim Cosmochim Acta. 2011;75:2483–98.

Zhang B, Xie X, Liu X, He L, Sun Y, Wang G. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biol. 2020;20:424. https://doi.org/10.1186/s12870-020-02629-4.

Zhang B, Liu X, Huan L, Shao Z, Zheng Z, Wang G. Carbonic anhydrase isoforms of Neopyropia yezoensis: intracellular localization and expression profiles in response to inorganic carbon concentration and life stage. J Phycol. 2022;58:657–68. https://doi.org/10.1111/jpy.13276.

Zheng Z, He B, Xie X, Wang G. Co-suppression in Pyropia yezoensis (Rhodophyta) Reveals the Role of PyLHCI in Light Harvesting and Generation Switch. J Phycol. 2021;57:160–71.

Zhou W, He L, Yang F, Lin A, Zhang B, Niu J, Wang G. Pyropia yezoensis can utilize CO2 in the air during moderate dehydration. Chin J Ocean Limnol. 2014;32:358–64.

Zhurikova EM, Ignatova LK, Rudenko NN, Mudrik VA, Vetoshkina DV, Ivanov BN. The participation of two carbonic anhydrases of alpha family photosynthetic reactions in Arabidopsis thaliana. Biochem Mosc. 2016;81:1182–7.

Zou D, Gao K. Photosynthetic bicarbonate utilization in Porphyra haitanensis (Bangiales, Rhodophyta). Chin Sci Bull. 2002;47:1629–33.