Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain
Tài liệu tham khảo
Aïnouché, 2004, Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines, Plant Syst. Evol., 246, 211, 10.1007/s00606-004-0149-8
Aïnouché, 1999, Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA, Am. J. Bot., 86, 590, 10.2307/2656820
Barrera, 1997, Biodiversity of bradyrhizobia nodulating Lupinus spp., Int. J. Syst. Bacteriol., 47, 1086, 10.1099/00207713-47-4-1086
Bottomley, 1994, Genetic structure and symbiotic characteristics of a Bradyrhizobium population recovered from a pasture soil, Appl. Environ. Microbiol., 60, 1754, 10.1128/AEM.60.6.1754-1761.1994
Chenna, 2003, Multiple sequence alignment with the Clustal series of programs, Nucleic Acids Res., 31, 3497, 10.1093/nar/gkg500
Coutinho, 1999, Evaluation of the diversity of rhizobia in Brazilian agricultural soils cultivated with soybeans, Appl. Soil Ecol., 13, 159, 10.1016/S0929-1393(99)00031-1
Eastwood, 2008, Diversity and evolutionary history of lupins – insights from new phylogenies, 346
Fos, 2006, Nuevas poblaciones del altramuz valenciano (Lupinus mariae-josephi), Toll Negre, 8, 21
Gladstones, 1998, Distribution, origin, taxonomy, history and importance, 1
Howieson, 1998, Nodulation, nitrogen fixation and nitrogen balance, 149
Hughes, 2006, Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes, Proc. Natl. Acad. Sci. U.S.A., 103, 10334, 10.1073/pnas.0601928103
Jarabo-Lorenzo, 2003, Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp., Syst. Appl. Microbiol., 26, 611, 10.1078/072320203770865927
Jaspers, 2004, Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies, Appl. Environ. Microbiol., 70, 4831, 10.1128/AEM.70.8.4831-4839.2004
Jordan, 1982, Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants, Int. J. Syst. Bacteriol., 32, 136, 10.1099/00207713-32-1-136
Kerley, 2000, Changes in root morphology of white lupin (Lupinus albus L.) and its adaptation to soils with heterogeneous alkaline/acid profiles, Plant Soil, 218, 197, 10.1023/A:1014967720952
Kerley, 2000, Investigations into the exploitation of heterogeneous soils by Lupinus albus L. and L. pilosus Murr. and the effect upon plant growth, Plant Soil, 222, 241, 10.1023/A:1004890202712
Kwon, 2005, Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium. Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences, Int. J. Syst. Evol. Microbiol., 55, 263, 10.1099/ijs.0.63097-0
Mahé, 2010, New data and phylogenetic placement of the enigmatic Old World lupin: Lupinus mariae-josephi H. Pascual, Genet. Resour. Crop Evol., 58, 101, 10.1007/s10722-010-9580-6
McInnes, 2004, Structure and diversity among rhizobial strains, populations and communities – a review, Soil Biol. Biochem., 36, 1295, 10.1016/j.soilbio.2004.04.011
Menna, 2009, Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene. ITS region and glnII, recA, atpD and dnaK genes, Int. J. Syst. Evol. Microbiol., 59, 2934, 10.1099/ijs.0.009779-0
Moulin, 2004, Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus, Mol. Phylogenet. Evol., 30, 720, 10.1016/S1055-7903(03)00255-0
National Soil Survey Center (U.S.), 1996
Navarro Peris, 2006, Localización del endemismo aparentemente extinto Lupinus mariae-josephi, Flora Montiberica, 33, 59
Ormeño-Orrillo, 2006, Molecular diversity of native bradyrhizobia isolated from lima bean (Phaseolus lunatus L.) in Peru, Syst. Appl. Microbiol., 29, 253, 10.1016/j.syapm.2005.09.002
Pascual, 2004, Lupinus mariae-josephi (Fabaceae), nueva y sorprendente especie descubierta en España, An. Jardín Bot. Madrid, 61, 69
Pruesse, 2012, SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics, 28, 1823, 10.1093/bioinformatics/bts252
Rivas, 2006, Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils, Plant Soil, 287, 23, 10.1007/s11104-006-9062-y
Rogel, 2011, Symbiovars in rhizobia reflect bacterial adaptation to legumes, Syst. Appl. Microbiol., 34, 96, 10.1016/j.syapm.2010.11.015
Rosselló-Móra, 2001, The species concept for prokaryotes, FEMS Microbiol. Rev., 25, 39, 10.1016/S0168-6445(00)00040-1
Sánchez-Cañizares, 2011, Endosymbiotic bacteria nodulating a new endemic lupine Lupinus mariae-josephi from alkaline soils in Eastern Spain represent a new lineage within the Bradyrhizobium genus, Syst. Appl. Microbiol., 34, 207, 10.1016/j.syapm.2010.11.020
Selander, 1986, Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics, Appl. Environ. Microbiol., 51, 873, 10.1128/AEM.51.5.873-884.1986
Silva, 2005, Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes, Mol. Ecol., 14, 4033, 10.1111/j.1365-294X.2005.02721.x
Somasegaran, 1994
Stepkowski, 2003, The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria, Syst. Appl. Microbiol., 26, 483, 10.1078/072320203770865765
Stepkowski, 2005, European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa, Appl. Environ. Microbiol., 71, 7041, 10.1128/AEM.71.11.7041-7052.2005
Stepkowski, 2003, Low sequence similarity and gene content of symbiotic clusters of Bradyrhizobium sp. WM9 (Lupinus) indicate early divergence of “lupin” lineage in the genus Bradyrhizobium, Antonie Van Leeuwenhoek, 84, 115, 10.1023/A:1025480418721
Stepkowski, 2007, Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees, Appl. Environ. Microbiol., 73, 3254, 10.1128/AEM.02125-06
Stepkowski, 2011, Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe, Syst. Appl. Microbiol., 34, 368, 10.1016/j.syapm.2011.03.002
Strijdom, 1998, South African studies on biological nitrogen-fixing systems and the exploitation of the nodule bacterium–legume symbiosis, S. Afr. J. Sci., 94, 11
Tamura, 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731, 10.1093/molbev/msr121
Tang, 1996, Effects of solution pH and bicarbonate on the growth and nodulation of a range of grain legume species, Plant Soil, 186, 321, 10.1007/BF02415527
Tang, 1993, Variation in the growth of lupin species and genotypes on alkaline soil, Plant Soil, 155, 513, 10.1007/BF00025096
Torriani, 1999, Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, Appl. Environ. Microbiol., 65, 4351, 10.1128/AEM.65.10.4351-4356.1999
Velázquez, 2010, Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium, Antonie Van Leeuwenhoek, 97, 363, 10.1007/s10482-010-9415-7
Vincent, 1970
Vinuesa, 2005, Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation, Mol. Phylogenet. Evol., 34, 29, 10.1016/j.ympev.2004.08.020
Vinuesa, 2005, Int. J. Syst. Evol. Microbiol., 55, 569, 10.1099/ijs.0.63292-0