Genetic diversity and selection of three nuclear genes in Schistosoma japonicum populations

Parasites and Vectors - Tập 10 - Trang 1-8 - 2017
Yaqi Li1, Mingbo Yin1,2, Qunfeng Wu1, Donald P. McManus3, David Blair4, Hongyan Li1, Bin Xu5, Xiaojin Mo5, Zheng Feng5, Wei Hu1,5
1School of Life Science, Fudan University, Shanghai, China
2MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
3QIMR Berghofer Medical Research Institute, Brisbane, Australia
4College of Science and Engineering, James Cook University, Townsville, Australia
5National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China

Tóm tắt

The blood fluke, Schistosoma japonicum still causes severe disease in China, the Philippines and Indonesia. Although there have been some studies the molecular epidemiology of this persistent and harmful parasite, few have explored the possibility and implications of selection in S. japonicum populations. We analyzed diversity and looked for evidence of selection at three nuclear genes (SjIpp2, SjFabp and SjT22.6) in 13 S. japonicum populations. SjT22.6 was found to exhibit high nucleotide diversity and was under positive selection in the mountainous region of mainland China. As a tegumental protein, its secondary and tertiary structure differed between S. japonicum strains from the mountainous and lakes regions. In contrast, SjIpp2 and SjFabp had relatively low levels of nucleotide diversity and did not show significant departure from neutrality. As a tegument-associated antigen-encoding gene of S. japonicum, SjT22.6 has high nucleotide diversity and appears to be under positive selection in the mountainous region of mainland China.

Tài liệu tham khảo

Utzinger J, Becker SL, Knopp S, Blum J, Neumayr AL, Keiser J, Hatz CF. Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med Wkly. 2012;142:24. Wu W, Feng AC, Huang YX. Research and control of advanced schistosomiasis japonica in China. Parasitol Res. 2015;114(1):17–27. Magalhaes RJS, Salamat MS, Leonardo L, Gray DJ, Carabin H, Halton K, et al. Geographical distribution of human Schistosoma japonicum infection in The Philippines: tools to support disease control and further elimination. Int J Parasitol. 2014;44(13):977–84. Satrija F, Ridwan Y, Jastal, Samarang, Rauf A. Current status of schistosomiasis in Indonesia. Acta Trop. 2015;141:349–53. Zhao QP, Sen Jiang M, Dong HF, Nie P. Diversification of Schistosoma japonicum in mainland China revealed by mitochondrial DNA. Plos Neglect Trop D. 2012;6(2):11. Lei ZL, Zheng H, Zhang LJ, Zhu R, Xu ZM, Xu J, et al. Endemic status of schistosomiasis in People’s Republic of China in 2013. Chin J Schistosom Control. 2014;26(6):591–7. Li SZ, Zheng H, Abe EM, Yang K, Bergquist R, Qian YJ, et al. Reduction patterns of acute schistosomiasis in the People’s Republic of China. Plos Neglect Trop D. 2014;8(5):e2849. Shrivastava J, Qian BZ, McVean G, Webster JP. An insight into the genetic variation of Schistosoma japonicum in mainland China using DNA microsatellite markers. Mol Ecol. 2005;14(3):839–49. Zarowlecki MZ, Huyse T, Littlewood DTJ. Making the most of mitochondrial genomes - Markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes : Digenea). Int J Parasitol. 2007;37(12):1401–18. Bowles J, Hope M, Tiu WU, Liu XS, McManus DP. Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Trop. 1993;55(4):217–29. Hope M, Foley DH, McManus DP. Electrophoretically-detected allozyme variation reveals only moderate differentiation between Chinese and Philippine Schistosoma japonicum. Acta Trop. 1995;60(2):101–8. Gasser RB, BaoZhen Q, Nansen P, Johansen MV, Bogh H. Use of RAPD for the detection of genetic variation in the human blood fluke, Schistosoma japonicum, from mainland China. Mol Cell Probes. 1996;10(5):353–8. Sorensen E, Drew AC, Brindley PJ, Bogh HO, Gasser RB, Qian BZ, et al. Variation in the sequence of a mitochondrial NADH dehydrogenase I gene fragment among six natural populations of Schistosoma japonicum from China. Int J Parasitol. 1998;28(12):1931–4. Zhao GH, Mo XH, Zou FC, Li J, Weng YB, Lin RQ, Xia CM, Zhu XQ. Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol. 2009;162(1-2):67–74. Yin M, Li H, McManus DP, Blair D, Su J, Yang Z, et al. Geographical genetic structure of Schistosoma japonicum revealed by analysis of mitochondrial DNA and microsatellite markers. Parasit Vector. 2015;8(1):757. Yin MB, Zheng HX, Su J, Feng Z, McManus DP, Zhou XN, et al. Co-dispersal of the blood fluke Schistosoma japonicum and Homo sapiens in the Neolithic Age. Sci Rep. 2015;5:8. Young ND, Chan KG, Korhonen PK, Chong TM, Ee R, Mohandas N, et al. Exploring molecular variation in Schistosoma japonicum in China. Sci Rep. 2015;5:12. Attwood SW, Ibaraki M, Saitoh Y, Nihei N, Janies DA. Comparative phylogenetic studies on Schistosoma japonicum and its snail intermediate host Oncomelania hupensis: Origins, dispersal and coevolution. Plos Neglect Trop D. 2015;9(7):28. Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002;34(3):275–305. Liu F, Lu J, Hu W, Wang SY, Cui SJ, Chi M, et al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. Plos Pathog. 2006;2(4):268–81. Huang FL, Glinsmann WH. Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem. 1976;70(2):419–26. Furlong ST, Caulfield JP. Schistosoma mansoni: synthesis and release of phospholipids, lysophospholipids, and neutral lipids by schistosomula. Exp Parasitol. 1989;69(1):65–77. Zhang ZP, Xu HX, Gan WJ, Zeng SX, Hu XC. Schistosoma japonicum calcium-binding tegumental protein SjTP22.4 immunization confers praziquantel schistosomulumicide and antifecundity effect in mice. Vaccine. 2012;30(34):5141–50. Yin MB, Hu W, Mo XJ, Wang SY, Brindley PJ, McManus DP, et al. Multiple near-identical genotypes of Schistosoma japonicum can occur in snails and have implications for population-genetic analyses. Int J Parasitol. 2008;38(14):1681–91. Zhou Y, Zheng HJ, Chen YY, Zhang L, Wang K, Guo J, et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature. 2009;460(7253):345–U356. Lu G, Moriyama EN. Vector NTI, a balanced all-in-one sequence analysis suite. Briefings in Bioinformatics. 2004;5(4):378–88. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2. Watterson GA. Number of segregating sites in genetic models without recombination. Theor Popul Biol. 1975;7(2):256–76. Salzburger W, Ewing GB, Von Haeseler A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol. 2011;20(9):1952–63. Biswas S, Akey JM. Genomic insights into positive selection. Trends Genet. 2006;22(8):437–46. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–95. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147(2):915–25. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins. 2009;77:114–22. Laskowski RA, Watson JD, Thornton JM. ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 2005;33:W89–93. Roy A, Yang JY, Zhang Y. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012;40(W1):W471–7. Roy A, Zhang Y. Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure. 2012;20(6):987–97. Yang JY, Roy A, Zhang Y. BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res. 2013;41(D1):D1096–103. Benison G, Karplus PA, Barbar E. The interplay of ligand binding and quaternary structure in the diverse interactions of dynein light chain LC8. J Mol Biol. 2008;384(4):954–66. Hall J, Karplus PA, Barbar E. Multivalency in the assembly of intrinsically disordered dynein intermediate chain. J Biol Chem. 2009;284(48):33115–21. Santiago ML, Hafalla JCR, Kurtis JD, Aligui GL, Wiest PM, Olveda RM, et al. Identification of the Schistosoma japonicum 22.6-kDa antigen as a major target of the human IgE response: Similarity of IgE-binding epitopes to allergen peptides. Int Arch of Allergy Immunol. 1998;11(2):94–104. Zhang W, Li J, Duke M, Jones MK, Kuang L, Zhang J, et al. Inconsistent protective efficacy and marked polymorphism limits the value of Schistosoma japonicum tetraspanin-2 as a vaccine target. Plos Neglect Trop D. 2011;5(5):e1166. Cai PF, Bu LY, Wang JA, Wang ZS, Zhong XA, Wang H. Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2: Sequence variation and possible implications for immune evasion. Biochem Biophys Res Commun. 2008;372(1):197–202. Escalante AA, Cornejo OE, Rojas A, Udhayakumar V, Lal AA. Assessing the effect of natural selection in malaria parasites. Trends Parasitol. 2004;20(8):388–95. Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, Lawrence GJ, Burdon JJ. Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol Biol Evol. 2009;26(11):2499–513. Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D. Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol Biol Evol. 2005;22(10):2073–83. Obbard DJ, Jiggins FM, Halligan DL, Little TJ. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol. 2006;16(6):580–5. Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol. 2008;17(1):431–49. Li SZ, Wang YX, Yang K, Liu Q, Wang Q, Zhang Y, et al. Landscape genetics: the correlation of spatial and genetic distances of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum in mainland China. Geospatial Health. 2009;3(2):221–31. Saijuntha W, Jarilla B, Leonardo AK, Sunico LS, Leonardo LR, Andrews RH, et al. Genetic structure inferred from mitochondrial 12S ribosomal RNA sequence of Oncomelania quadrasi, the intermediate snail host of Schistosoma japonicum in the Philippines. Am J Trop Med Hyg. 2014;90(6):1140–5. Zhou XN, Kristensen TK. Genetic and morphological variations in populations of Oncomelania spp. in China. Southeast Asian J Trop Med Public Health. 1999;30(1):166–76. Gray DJ, Williams GM, Li YS, Chen HG, Forsyth SJ, Li RS, et al. A cluster-randomised intervention trial against Schistosoma japonicum in the Peoples’ Republic of China: Bovine and human transmission. Plos ONE. 2009;4(6):7. Lu DB, Rudge JW, Wang TP, Donnelly CA, Fang GR, Webster JP. Transmission of Schistosoma japonicum in marshland and hilly regions of China: Parasite population genetic and sibship structure. Plos Neglect Trop D. 2010;4(8):10. Thomas CM, Fitzsimmons CM, Dunne DW, Timson DJ. Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: Differences in ion and drug binding properties. Biochimie. 2015;108:40–7. Hoffmann KF, Strand M. Molecular characterization of a 20.8-kDa Schistosoma mansoni antigen - Sequence similarity to tegumental associated antigens and dynein light chains. J Biol Chem. 1997;272(23):14509–15. Skelly PJ, Shoemaker CB. The Schistosoma mansoni host-interactive tegument forms from vesicle eruptions of a cyton network. Parasitol. 2001;122:67–73. Hockley DJ, McLaren DJ. Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. Int J Parasitol. 1973;3(1):13–25.