Biến đổi gen ở bệnh nhân trưởng thành người Thái bị bệnh bạch cầu myeloid cấp tính và hội chứng tiền tủy—tăng bạch cầu phát hiện bằng kỹ thuật giải trình tự thế hệ tiếp theo
Tóm tắt
Nhiều biến đổi phân tử ảnh hưởng đến tiên lượng của bệnh nhân bị bệnh bạch cầu myeloid cấp tính (AML) và hội chứng tiền tủy (MDS) có tăng bạch cầu (EB). Nghiên cứu này nhằm xác định tỷ lệ mắc và tác động lâm sàng của các biến đổi gen phân tử ở bệnh nhân người Thái bị AML và MDS-EB, được phát hiện bằng kỹ thuật giải trình tự thế hệ tiếp theo (NGS). Nghiên cứu quan sát theo kiểu tiến cứu này được thực hiện từ năm 2018 đến 2020 trên những bệnh nhân người Thái mới được chẩn đoán mắc AML hoặc MDS-EB từ 15 tuổi trở lên. NGS được thực hiện bằng cách sử dụng một phương pháp làm giàu mục tiêu dựa trên amplicon tùy chỉnh cho 42 gen thường xuyên bị đột biến trong các u tủy. Kết quả phân tử được tương quan với các đặc điểm nền tảng của bệnh nhân và bệnh cũng như các kết quả điều trị. Bốn mươi chín bệnh nhân đã được ghi danh vào nghiên cứu này. Tuổi trung bình là 56 tuổi (khoảng tứ phân vị [IQR], 44–64), với tỷ lệ nữ và nam gần như bằng nhau. Số lượng đột biến trung bình là 3 (IQR, 2–4). Các biến đổi thường gặp nhất là
Từ khóa
#bệnh bạch cầu myeloid cấp tính #hội chứng tiền tủy #biến đổi gen #giải trình tự thế hệ tiếp theo #tiên lượng bệnhTài liệu tham khảo
Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447. https://doi.org/10.1182/blood-2016-08-733196
National Comprehensive Cancer Network (NCCN), Acute Myeloid Leukemia (version 3.2021), Available at: https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. Accessed 18 March 2021
Hamilton BK, Rybicki L, Hirsch C, Przychodzen B, Nazha A, Gerds AT, Hanna R, Kalaycio M, Sekeres MA, Sobecks R, de Lima M, Majhail NS, Maciejewski J (2019) Mutation clonal burden and allogeneic hematopoietic cell transplantation outcomes in acute myeloid leukemia and myelodysplastic syndromes. Bone Marrow Transplant 54(8):1281–1286. https://doi.org/10.1038/s41409-019-0444-1
Dohner H, Dolnik A, Tang L, Seymour JF, Minden MD, Stone RM et al (2018) Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia 32(12):2546–2557. https://doi.org/10.1038/s41375-018-0257-z
Welch JS (2018) Patterns of mutations in TP53 mutated AML. Best Pract Res Clin Haematol 31(4):379–383. https://doi.org/10.1016/j.beha.2018.09.010
Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J et al (2016) RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 30(11):2160–2168. https://doi.org/10.1038/leu.2016.126
Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, Thiede C, Prior TW, Döhner K, Marcucci G, Lo-Coco F, Klisovic RB, Wei A, Sierra J, Sanz MA, Brandwein JM, de Witte T, Niederwieser D, Appelbaum FR, Medeiros BC, Tallman MS, Krauter J, Schlenk RF, Ganser A, Serve H, Ehninger G, Amadori S, Larson RA, Döhner H (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464. https://doi.org/10.1056/NEJMoa1614359
Schlenk RF, Weber D, Fiedler W, Salih HR, Wulf G, Salwender H, Schroeder T, Kindler T, Lübbert M, Wolf D, Westermann J, Kraemer D, Götze KS, Horst HA, Krauter J, Girschikofsky M, Ringhoffer M, Südhoff T, Held G, Derigs HG, Schroers R, Greil R, Grießhammer M, Lange E, Burchardt A, Martens U, Hertenstein B, Marretta L, Heuser M, Thol F, Gaidzik VI, Herr W, Krzykalla J, Benner A, Döhner K, Ganser A, Paschka P, Döhner H, German-Austrian AML Study Group (2019) Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood 133(8):840–851. https://doi.org/10.1182/blood-2018-08-869453
DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS et al (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398. https://doi.org/10.1056/NEJMoa1716984
Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK et al (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130(6):722–731. https://doi.org/10.1182/blood-2017-04-779405
Bejar R (2018) What biologic factors predict for transformation to AML? Best Pract Res Clin Haematol 31(4):341–345. https://doi.org/10.1016/j.beha.2018.10.002
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221. https://doi.org/10.1056/NEJMoa1516192
Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, Fiedler M, Novak U, Amstutz U, Pabst T (2018) Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J 8(11):113
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22(3):568–576. https://doi.org/10.1101/gr.129684.111
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308
Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2019) COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 47(D1):D941–D947. https://doi.org/10.1093/nar/gky1015
Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP (2017) Variant review with the integrative genomics viewer. Cancer Res 77(21):e31–e34. https://doi.org/10.1158/0008-5472.CAN-17-0337
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102
Lin PH, Li HY, Fan SC, Yuan TH, Chen M, Hsu YH, Yang YH, Li LY, Yeh SP, Bai LY, Liao YM, Lin CY, Hsieh CY, Lin CC, Lin CH, Lien MY, Chen TT, Ni YH, Chiu CF (2017) A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: implications for clinical practice. Cancer Med 6(2):349–360. https://doi.org/10.1002/cam4.969
Hussaini MO, Mirza AS, Komrokji R, Lancet J, Padron E, Song J (2018) Genetic Landscape of Acute Myeloid Leukemia Interrogated by next-generation sequencing: a large cancer center experience. Cancer Genomics Proteomics 15(2):121–126. https://doi.org/10.21873/cgp.20070
Cao XX, Cai H, Mao YY, Wu Q, Zhang L, Zhou DB, Li J (2018) Next-generation sequencing-based genetic landscape and its clinical implications for Chinese acute myeloid leukemia patients. Cancer Cell Int 18:215. https://doi.org/10.1186/s12935-018-0716-7
Nagel G, Weber D, Fromm E, Erhardt S, Lubbert M, Fiedler W et al (2017) Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann Hematol 96(12):1993–2003. https://doi.org/10.1007/s00277-017-3150-3
Zhang Y, Wang F, Chen X, Liu W, Fang J, Wang M, Teng W, Cao P, Liu H (2019) Mutation profiling of 16 candidate genes in de novo acute myeloid leukemia patients. Front Med 13(2):229–237. https://doi.org/10.1007/s11684-018-0616-1
Gaidzik VI, Schlenk RF, Paschka P, Stölzle A, Späth D, Kuendgen A, von Lilienfeld-Toal M, Brugger W, Derigs HG, Kremers S, Greil R, Raghavachar A, Ringhoffer M, Salih HR, Wattad M, Kirchen HG, Runde V, Heil G, Petzer AL, Girschikofsky M, Heuser M, Kayser S, Goehring G, Teleanu MV, Schlegelberger B, Ganser A, Krauter J, Bullinger L, Döhner H, Döhner K (2013) Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 121(23):4769–4777. https://doi.org/10.1182/blood-2012-10-461624
Taskesen E, Havermans M, van Lom K, Sanders MA, van Norden Y, Bindels E, Hoogenboezem R, Reinders MJT, Figueroa ME, Valk PJM, Löwenberg B, Melnick A, Delwel R (2014) Two splice-factor mutant leukemia subgroups uncovered at the boundaries of MDS and AML using combined gene expression and DNA-methylation profiling. Blood 123(21):3327–3335. https://doi.org/10.1182/blood-2013-07-512855
McGraw KL, Nguyen J, Komrokji RS, Sallman D, Al Ali NH, Padron E et al (2016) Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 101(8):e320–e323. https://doi.org/10.3324/haematol.2016.143214
Owattanapanich W, Utchariyaprasit E, Tantiworawit A, Rattarittamrong E, Niparuck P, Puavilai T, Julamanee J, Saelue P, Chanswangphuwana C, Polprasert C, Limvorapitak W, Kanitsap N, Wanitpongpun C, Nakhakes C, Sriswasdi C, Prayongratana K (2018) Improved survival of elderly-fit patients with acute myeloid leukemia requiring intensive therapy: 3-year multicenter analysis from TALWG. Clin Lymphoma Myeloma Leuk 18(12):e509–e514. https://doi.org/10.1016/j.clml.2018.08.002
Eisfeld AK, Kohlschmidt J, Mrozek K, Blachly JS, Walker CJ, Nicolet D et al (2018) Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia 32(6):1338–1348. https://doi.org/10.1038/s41375-018-0068-2
Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, Paschka P, Held G, von Lilienfeld-Toal M, Lübbert M, Fröhling S, Zenz T, Krauter J, Schlegelberger B, Ganser A, Lichter P, Döhner K, Döhner H (2012) TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119(9):2114–2121. https://doi.org/10.1182/blood-2011-08-375758
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH et al (2020) Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med 383(7):617–629. https://doi.org/10.1056/NEJMoa2012971
Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA et al (2021) Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol:JCO2002341. https://doi.org/10.1200/JCO.20.02341
Sallman DA, Asch AS, Al Malki MM, Lee DJ, Donnellan WB, Marcucci G et al (2019) The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: ongoing phase 1b results. Blood 134(Supplement_1):569. https://doi.org/10.1182/blood-2019-126271