Genetic Therapy in Veterinary Medicine

Springer Science and Business Media LLC - Tập 12 - Trang 1397-1403 - 2022
Elena Yu. Zakirova1, Albina G. Malanyeva1, Catrin S. Rutland2, Alexander M. Aimaletdinov1
1Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
2Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK

Tóm tắt

Gene therapy focuses on the genetic modification of cells, to produce a therapeutic effect or for the treatment of disease, by repairing or reconstructing defective genetic material. The development of genetic engineering and biotechnology makes it possible to deliver genes to the cells and tissues of the body, or to edit genes in a targeted manner. This allows us to “correct” faulty molecular process which provides, in comparison with conventional pharmaceuticals, fundamentally new therapeutic opportunities for previously incurable animal diseases. In this article, we demonstrate the prospects for using gene therapy in veterinary medicine. The possibility of using genetic engineering allows us to create species-specific gene drugs for animals, whilst avoiding unwanted complications and side effects. Gene therapy also opens up novel contemporary ways of treating a variety of animal diseases and additionally makes it possible to control the number of homeless animals in the community.

Tài liệu tham khảo

Melnikova, E. V., Merkulova, O. V., Chaplenk, O. A. A., Rachinskaya, O. A., & Merkulov, V. A. (2019). International practices of registration and use of drugs for gene therapy in clinical practice. Antibiotics and Chemotherapy, 64(1–2), 59–68. https://doi.org/10.24411/0235-2990-2019-10010 Masgutov, R., Chekunov, M., Zhuravleva, M., Masgutova, G., Teplov, O., Salikhov, R., et al. (2017). Use of gene-activated demineralized bone allograft in the therapy of ulnar pseudarthrosis. Case report. BioNanoScience, 7(1), 194–8. https://doi.org/10.1007/s12668-016-0325-7 Acland G. M., Aguirre, G. D., Bennett, J., Aleman, T. S., Cideciyan, A. V., Bennicelli, J., … Jacobson, S. G. (2005). Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Molecular Therapy, 12(6), 1072–1082.https://doi.org/10.1016/j.ymthe.2005.08.008 Pavlin, D., Cemazar, M., Sersa, G., & Tozon, N. (2012). IL-12 based gene therapy in veterinary medicine. Journal of Translational Medicine, 10, 234. https://doi.org/10.1186/1479-5876-10-234 Bosiack, A. P., Giuliano, E. A., & Mohan, R. R. (2012). Corneal gene therapy in veterinary medicine: A review. The Journal of Veterinary Science & Technology, S8, 001. https://doi.org/10.4172/2157-7579.S8-001 Komaromy, A. M., Bras, D., Esson, D. W., Fellman, R. L., Grozdanic, S. D., Kagemann, L., et al. (2019). The future of canine glaucoma therapy. Veterinary ophthalmology, 22(5), 726–40. https://doi.org/10.1111/vop.12678 Hu, M. L., Edwards, T. L., O’Hare, F., Hickey, D. G., Wang, J. H., Liu, Z., & Ayton, L. N. (2021). Gene therapy for inherited retinal diseases: progress and possibilities. Clinical and Experimental Optometry, 104(4), 444–454. https://doi.org/10.1080/08164622.2021.1880863 Switonski, M. (2020). Impact of gene therapy for canine monogenic diseases on the progress of preclinical studies. Journal of Applied Genetics, 61(2), 179–86. https://doi.org/10.1007/s13353-020-00554-8 Acland, G. M., Aguirre, G. D., Bennett, J., Aleman, T. S., Cideciyan, A. V., Bennicelli, J., et al. (2005). Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Molecular Therapy : the journal of the American Society of Gene Therapy, 12(6), 1072–82. https://doi.org/10.1016/j.ymthe.2005.08.008 Jacobson, S. G., Acland, G. M., Aguirre, G. D., Aleman, T. S., Schwartz, S. B., Cideciyan, A. V., Zeiss, C., Komáromy, A. M., Kaushal, S., Roman, A. J., Windsor, E. A., Sumaroka, A., Pearce-Kelling, S., Conlon, T. J., Chiodo, V. A., Boye, S. L., Flotte, T. R., Maguire, A. M., Bennett, J., & Hauswirth, W. W. (2006). Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Molecular Therapy : the journal of the American Society of Gene Therapy, 13(6), 1074–84. https://doi.org/10.1016/j.ymthe.2006.03.005 Beall, C. J., Phipps, A. J., Mathes, L. E., & Stromberg, P. (2000). Johnson PR Transfer of the feline erythropoietin gene to cats using a recombinant adeno-associated virus vector. Gene Therapy, 7(6), 534–539. https://doi.org/10.1038/sj.gt.3301126 Randolph, J. E., Scarlett, J. M., Stokol, T., Saunders, K. M., & MacLeod, J. N. (2004). Expression, bioactivity, and clinical assessment of recombinant feline erythropoietin. American Journal of Veterinary Research, 65, 1355–1366. https://doi.org/10.2460/ajvr.2004.65.1355 Vapniarsky, N., Lame, M., McDonnel, S., & Murphy, B. (2012). A lentiviral gene therapy strategy for the in vitro production of feline erythropoietin. PLoS ONE, 7(9), e45099. https://doi.org/10.1371/journal.pone.0045099 Callan, M. B., Haskins, M. E., Wang, P., Zhou, S., & High, K. A. (2016). Arruda VR Successful phenotype improvement following gene therapy for severe hemophilia A in privately owned dogs. PLoS ONE, 11(3), e0151800. https://doi.org/10.1371/journal.pone.0151800 Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD, Sanvito F, et al. (2015). Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Science Translational Medicine, 7(277):277ra28. https://doi.org/10.1126/scitranslmed.aaa1405 Sleeper, M. M., Bish, L. T., & Sweeney, H. L. (2010). Status of therapeutic gene transfer to treat canine dilated cardiomyopathy in dogs. The Veterinary Clinics of North America Small Animal Practice, 40(4), 717–24. https://doi.org/10.1016/j.cvsm.2010.03.005 Sleeper, M. M. (2017). Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats. The Veterinary Clinics of North America Small Animal Practice, 47(5), 1113–21. https://doi.org/10.1016/j.cvsm.2017.04.005 Berni, P., Leonardi, F., Conti, V., & Ramoni, R. (2021). Grolli S and Mattioli G Case report: A novel ventilated thermoplastic mesh bandage for post-operative management of large soft tissue defects: A case series of three dogs treated with autologous platelet concentrates. Frontiers in Veterinary Science, 8, 704567. https://doi.org/10.3389/fvets.2021.704567 Zakirova, E. Y., Aimaletdinov, A. M., Alexandrova, N. M., Ganiev, I. M., Sofro-nova, S. A., Valeeva, A. N., et al. (2020). Developing a species-specific genetic agent for treatment of skin defects in dogs. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki, 162(3), 361–80. https://doi.org/10.26907/2542-064X.2020.3.361-380 Merlo, D. F., Rossi, L., Pellegrino, C., Ceppi, M., Cardellino, U., Capurro, C., et al. (2008). Cancer incidence in pet dogs: Findings of the Animal Tumor Registry of Genoa, Italy. Journal of Veterinary Internal Medicine, 22(4), 976–84. https://doi.org/10.1111/j.1939-1676.2008.0133.x Lu X. (2017). Impact of IL-12 in cancer. Current Cancer Drug Targets, 17(8). https://doi.org/10.2174/1568009617666170427102729 Jourdier, T. M., Moste, C., Bonnet, M. C., Delisle, F., Tafani, J. P., Devauchelle, P., et al. (2003). Local immunotherapy of spontaneous feline fibrosarcomas using recombinant poxviruses expressing interleukin 2 (IL2). Gene Therapy, 10(26), 2126–32. https://doi.org/10.1038/sj.gt.3302124 Hüttinger, C., Hirschberger, J., Jahnke, A., Köstlin, R., Brill, T., Plank, C., et al. (2008). Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: A phase I trial. The Journal of Gene Medicine, 10(6), 655–67. https://doi.org/10.1002/jgm.1185 Munks MW. (2012). Progress in development of immunocontraceptive vaccines for permanent non-surgical sterilization of cats and dogs. Reproduction in domestic animals = Zuchthygiene, 47 Suppl 4:223–227. https://doi.org/10.1111/j.1439-0531.2012.02079.x Albers-Wolthers, K. H., de Gier, J., Kooistra, H. S., Rutten, V. P., van Kooten, P. J., de Graaf, J. J., et al. (2014). Identification of a novel kisspeptin with high gonadotrophin stimulatory activity in the dog. Neuroendocrinology, 99(3–4), 178–89. https://doi.org/10.1159/000364877 Rhodes L. (2017). New approaches to non-surgical sterilization for dogs and cats: Opportunities and challenges. Reproduction in Domestic Animals = Zuchthygiene, 52 Suppl 2:327–331. https://doi.org/10.1111/rda.12862 Dissen GA, Adachi K, Lomniczi A, Chatkupt T, Davidson BL, Nakai H, et al. (2017). Engineering a gene silencing viral construct that targets the cat hypothalamus to induce permanent sterility: An update. Reproduction in Domestic Animals = Zuchthygiene, 52 Suppl 2:354–358. https://doi.org/10.1111/rda.12834 Dissen GA, Lomniczi A, Boudreau RL, Chen YH, Davidson BL, Ojeda SR. (2012). Targeted gene silencing to induce permanent sterility. Reproduction in Domestic Animals = Zuchthygiene, 47 Suppl 4:228–232. https://doi.org/10.1111/j.1439-0531.2012.02080.x Nixon, A. J., Grol, M. W., Lang, H. M., Ruan, M. Z. C., Stone, A., Begum, L., et al. (2018). Disease-modifying osteoarthritis treatment with interleukin-1 receptor antagonist gene therapy in small and large animal models. Arthritis & Rheumatology, 70(11), 1757–68. https://doi.org/10.1002/art.40668 Frisbie DD, Ghivizzani SC, Robbins PD, Evans CH, McIlwraith CW. (2002). Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Therapy, 9(1):12–20. https://doi.org/10.1038/sj.gt.3301608 Schulze-Tanzil, G., Zreiqat, H., Sabat, R., Kohl, B., Halder, A., Muller, R. D., & John, T. (2009). Interleukin-10 and articular cartilage: Experimental therapeutical approaches in cartilage disorders. Current Gene Therapy, 9(4), 306–315. https://doi.org/10.2174/156652309788921044 Moroguchi, A., Ishimura, K., Okano, K., Wakabayashi, H., Maeba, T., & Maeta, H. (2004). Interleukin-10 suppresses proliferation and remodeling of extracellular matrix of cultured human skin fibroblasts. European Surgical Research, 36(1), 39–44. https://doi.org/10.1159/000075073 Finnegan, A., Kaplan, C. D., Cao, Y., Eibel, H., Glant, T. T., & Zhang, J. (2003). Collagen-induced arthritis is exacerbated in IL-10-deficient mice. Arthritis Research & Therapy, 5(1), R18-24. https://doi.org/10.1186/ar601 Moss, K. L., Jiang, Z., Dodson, M. E., Linardi, R. L., Haughan, J., Gale, A. L., … Ortved, K. F. (2020). Sustained interleukin-10 transgene expression following intra-articular AAV5-IL-10 administration to horses.Human Gene Therapy, 31(1-2), 110–118.https://doi.org/10.1089/hum.2019.195 Ortved, K. F. (2018). Regenerative medicine and rehabilitation for tendinous and ligamentous injuries in sport horses. The Veterinary Clinics of North America Equine practice, 34(2), 359–73. https://doi.org/10.1016/j.cveq.2018.04.012 Kovac, M., Litvin, Y. A., Aliev, R. O., Zakirova, E. Y., Rutland, C. S., Kiyasov, A. P., et al. (2017). Gene therapy using plasmid DNA encoding vascular endothelial growth factor 164 and fibroblast growth factor 2 genes for the treatment of horse tendinitis and desmitis: Case reports. Frontiers in Veterinary Science, 4, 168. https://doi.org/10.3389/fvets.2017.00168 Kovac, M., Litvin, Y. A., Aliev, R. O., Zakirova, E. Y., Rutland, C. S., Kiyasov, A. P., et al. (2018). Gene therapy using plasmid DNA encoding VEGF164 and FGF2 genes: A novel treatment of naturally occurring tendinitis and desmitis in horses. Frontiers in Pharmacology, 9, 978. https://doi.org/10.3389/fphar.2018.00978 Aimaletdinov, A., Mindubaeva, G., Khalikova, S., Kabwe, E., Salmakova, A., Alexandrova, N., et al. (2020). Application of gene therapy in the treatment of superficial digital flexor tendon injury in horses. Open Veterinary Journal, 10(3), 261–6. https://doi.org/10.4314/ovj.v10i3.3 Heeley, A. M., O’Neill, D. G., Davison, L. J., et al. (2020). Diabetes mellitus in dogs attending UK primary-care practices: Frequency, risk factors and survival. Canine Genet Epidemiol, 7, 6. https://doi.org/10.1186/s40575-020-00087-7 Yoon, S., Fleeman, L. M., Wilson, B. J., Mansfield, C. S., & McGreevy, P. (2020). Epidemiological study of dogs with diabetes mellitus attending primary care veterinary clinics in Australia. Veterinary Record, 187(3), e22. https://doi.org/10.1136/vr.105467 Jaén, M. L., Vilà, L., Elias, I., Jimenez, V., Rodó, J., Maggioni, L., Ruiz-de Gopegui, R., Garcia, M., Muñoz, S., Callejas, D., Ayuso, E., Ferré, T., Grifoll, I., Andaluz, A., Ruberte, J., Haurigot, V., & Bosch, F. (2017). Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Molecular Therapy. Methods & Clinical Development, 6, 1–7. https://doi.org/10.1016/j.omtm.2017.03.008 Callejas, D., Mann, C. J., Ayuso, E., Lage, R., Grifoll, I., Roca, C., et al. (2013). Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes, 62(5), 1718–1729. https://doi.org/10.2337/db12-1113 Masuda, K. (2005). DNA vaccination against Japanese cedar pollinosis in dogs suppresses type I hypersensitivity by controlling lesional mast cells. Veterinary and Immunology Immunopathology, 108(1–2), 185–7. https://doi.org/10.1016/j.vetimm.2005.07.014 Osada, T., & Okano, M. (2021). Japanese cedar and cypress pollinosis updated: New allergens, cross-reactivity, and treatment. Allergology International : official journal of the Japanese Society of Allergology, 70(3), 281–290. https://doi.org/10.1016/j.alit.2021.04.002