Genetic Risk Factors for Inhibitor Development in Hemophilia A

Russian Journal of Genetics - Tập 57 - Trang 867-877 - 2021
O. S. Pshenichnikova1, V. L. Surin1
1National Research Center for Hematology, Moscow, Russia

Tóm tắt

The review is devoted to the description of possible mechanisms of inhibitor development in hemophilia A. Most of the focus is on the genetic factors, but attention is also paid to factors of different nature, as well as their combinations that can provoke the synthesis of inhibitory antibodies. Among the genetic determinants, special attention is paid to the type of factor VIII gene mutations, as well as functional SNPs in the protein-coding genes that regulate the immune system, which were studied by different research groups using both classical and the most modern molecular genetic methods. The type of F8 gene mutations remains the most unbiassed genetic risk factor for the inhibitor development; moreover, studies aimed at the analysis of combinations of the F8 missense mutations, causing the synthesis of antibodies, with HLA class II alleles are of particular interest. For other genetic markers, further studies are required to verify their putative role in the development of the inhibitory form of hemophilia A. Among the nongenetic factors, the inhibitor development largely depends on the type of FVIII product and the intensity of therapy. However, despite numerous studies, hemophilia inhibitors remain the most difficult treatment option of this disease. In solving this problem, the construction of algorithms for predicting the risk of inhibitor development using the integration analysis that takes into account multiple factors of both genetic and other nature and their interaction can help.

Tài liệu tham khảo

Garagiola, I., Palla, R., and Peyvandi, F., Risk factors for inhibitor development in severe hemophilia A, Thromb. Haemostasis, 2018, vol. 168, pp. 20—27. https://doi.org/10.1016/j.thromres.2018.05.027 Astermark, J., Donfield, S.M., Gomperts, E.D., et al., The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) combined cohort, Blood, 2013, vol. 121, no. 8, pp. 1446—1454. https://doi.org/10.1182/blood-2012-06-434803 Goodeve, A.C., Williams, I., Bray, G.L., and Peake, I.R., Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (RecombinateTM), Thromb. Haemostasis, 2000, vol. 83, no. 6, pp. 844—848. https://doi.org/10.1055/s-0037-1613931 Peyvandi, F. and Garagiola, I., Product type and other environmental risk factors for inhibitor development in severe hemophilia A, Res. Pract. Thromb. Haemostasis, 2018, vol. 2, no. 2, pp. 220—227. https://doi.org/10.1002/rth2.12094 Whelan, S.F.J., Hofbauer, C.J., Horling, F.M., et al., Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients, Blood, 2013, vol. 121, no. 6, pp. 1039—1048. https://doi.org/10.1182/blood-2012-07-444877 Kahle, J., Orlowski, A., Stichel, D., et al., Epitope mapping via selection of anti-FVIII antibody-specific phage-presented peptide ligands that mimic the antibody binding sites, Thromb. Haemostasis, 2015, vol. 113, no. 2, pp. 396—405. https://doi.org/10.1160/TH14-01-0101 Hofbauer, C.J., Whelan, S.F.J., Hirschler, M., et al., Affinity of FVIII-specific antibodies reveals major differences between neutralizing and nonneutralizing antibodies in humans, Blood, 2015, vol. 125, no. 7, pp. 1180—1188. https://doi.org/10.1182/blood-2014-09-598268 Hofbauer, C.J., Kepa, S., Schemper, M., et al., FVIII-binding IgG modulates FVIII half-life in patients with severe and moderate hemophilia A without inhibitors, Blood, 2016, vol. 128, no. 2, pp. 293—296. https://doi.org/10.1182/blood-2015-10-675512 Lewis, K.B., Hughes, R.J., Epstein, M.S., et al., Phenotypes of allo- and autoimmune antibody responses to FVIII characterized by surface plasmon resonance, PLoS One, 2013, vol. 8, no. 5. e61120. https://doi.org/10.1371/journal.pone.0061120 Astermark, J., Why do inhibitors develop? Principles of and factors influencing the risk for inhibitor development in haemophilia, Haemophilia, 2006, vol. 12, no. S3, pp. 52—60. https://doi.org/10.1111/j.1365-2516.2006.01261.x White, G.C., Kempton, C.L., Grimsley, A., et al., Cellular immune responses in hemophilia: why do inhibitors develop in some, but not all hemophiliacs?, J. Thromb. Haemostasis, 2005, vol. 3, no. 8, pp. 1676—1681. https://doi.org/10.1111/j.1538-7836.2005.01375.x Astermark, J., FVIII inhibitors: pathogenesis and avoidance, Blood, 2015, vol. 125, no. 13, pp. 2045—2051. https://doi.org/10.1182/blood-2014-08-535328 Judge, T.A., Tang, A., and Turka, L.A., Immunosuppression through blockade of CD28:B7-mediated costimulatory signals, Immunol. Res., 1996, vol. 15, pp. 38—49. https://doi.org/10.1007/BF02918283 Qian, J., Collins, M., Sharpe, A.H., and Hoyer, L.W., Prevention and treatment of factor VIII inhibitors in murine hemophilia A, Blood, 2000, vol. 95, no. 4, pp. 1324—1329. https://doi.org/10.1182/blood.v95.4.1324.004k25_1324_1329 Hausl, C., Ahmad, R.U., Schwarz, H.P., et al., Preventing restimulation of memory B cells in hemophilia A: a potential new strategy for the treatment of antibody-dependent immune disorders, Blood, 2004, vol. 104, no. 1, pp. 115—122. https://doi.org/10.1182/blood-2003-07-2456 Lövgren, K.M., Søndergaard, H., Skov, S., and Wiinberg, B., Non-genetic risk factors in haemophilia A inhibitor management—the danger theory and the use of animal models, Haemophilia, 2016, vol. 22, no. 5, pp. 657—666. https://doi.org/10.1111/hae.13075 Pradeu, T. and Cooper, E.L., The danger theory: 20 years later, Front. Immunol., 2012, vol. 3, p. 287. https://doi.org/10.3389/fimmu.2012.00287 Dasgupta, S., Navarrete, A.M., Bayry, J., et al., A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 21, pp. 8965—8970. https://doi.org/10.1073/pnas.0702120104 Dasgupta, S., Repessé, Y., Bayry, J., et al., VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors, Blood, 2007, vol. 109, no. 2, pp. 610—612. https://doi.org/10.1182/blood-2006-05-022756 Herczenik, E., Van Haren, S.D., Wroblewska, A., et al., Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain, J. Allergy Clin. Immunol., 2012, vol. 129, no. 2, pp. 501—509. e5. https://doi.org/10.1016/j.jaci.2011.08.029 Delignat, S., Repessé, Y., Navarrete, A.M., et al., Immunoprotective effect of von Willebrand factor towards therapeutic factor VIII in experimental haemophilia A, Haemophilia, 2012, vol. 18, no. 2, pp. 248—254. https://doi.org/10.1111/j.1365-2516.2011.02679.x Lacroix-Desmazes, S., Bayry, J., Misra, N., et al., The prevalence of proteolytic antibodies against factor VIII in hemophilia A, N. Engl. J. Med., 2002, vol. 346, no. 9, pp. 662—667. https://doi.org/10.1056/NEJMoa011979 Tabriznia-Tabrizi, S., Gholampour, M., and Mansouritorghabeh, H., A close insight to factor VIII inhibitor in the congenital hemophilia A, Expert Rev. Hematol., 2016, vol. 9, no. 9, pp. 903—913. https://doi.org/10.1080/17474086.2016.1208554 Astermark, J., Berntorp, E., White, G.C., et al., The Malmö International Brother Study (MIBS): further support for genetic predisposition to inhibitor development, Haemophilia, 2001, vol. 7, pp. 267—272. https://doi.org/10.1046/j.1365-2516.2001.00510.x Santagostino, E., Mancuso, M.E., Rocino, A., et al., Environmental risk factors for inhibitor development in children with haemophilia A: a case—control study, Br. J. Haematol., 2005, vol. 130, no. 3, pp. 422—427. https://doi.org/10.1111/j.1365-2141.2005.05605.x Goudemand, J., Rothschild, C., Laurian, Y., and Calvez, T., Influence of the type of factor VIII concentrates on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A, Blood, 2006, vol. 107, no. 9, pp. 46—51. https://doi.org/10.1182/blood-2005-04-1371 Ragni, M.V., Ojeifo, O., Feng, J., et al., Risk factors for inhibitor formation in hemophilia: a prevalent case-control study, Haemophilia, 2009, vol. 15, no. 5, pp. 1074—1082. https://doi.org/10.1111/j.1365-2516.2009.02058.x Viel, K.R., Ameri, A., Abshire, T.C., et al., Inhibitors of factor VIII in black patients with hemophilia, N. Engl. J. Med., 2009, vol. 360, no. 16, pp. 1618—1627. https://doi.org/10.1056/NEJMoa075760 Carpenter, S.L., Michael Soucie, J., Sterner, S., and Presley, R., Increased prevalence of inhibitors in Hispanic patients with severe haemophilia A enrolled in the Universal Data Collection database, Haemophilia, 2012, vol. 18, no. 3, pp. 260—265. https://doi.org/10.1111/j.1365-2516.2011.02739.x Gunasekera, D., Ettinger, R.A., Fletcher, S.N., et al., Factor VIII gene variants and inhibitor risk in African American hemophilia A patients, Blood, 2015, vol. 126, no. 7, pp. 895—904. https://doi.org/10.1182/blood-2014-09-599365 Bardi, E. and Astermark, J., Genetic risk factors for inhibitors in haemophilia A, Eur. J. Haematol., 2015, vol. 94, no. S77, pp. 7—10. https://doi.org/10.1111/ejh.12495 Lakich, D., Kazazian, H.H., Antonarakis, S.E., and Gitschier, J., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A, Nat. Genet., 1993, vol. 5, no. 3, pp. 236—241. https://doi.org/10.1038/ng1193-236 Bagnall, R.D., Waseem, N., Green, P.M., and Giannelli, F., Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A, Blood, 2002, vol. 99, no. 1, pp. 168—174. https://doi.org/10.1182/blood.V99.1.168 Oldenburg, J. and Pavlova, A., Genetic risk factors for inhibitors to factors VIII and IX, Haemophilia, 2006, vol. 12, no. S6, pp. 15—22. https://doi.org/10.1111/j.1365-2516.2006.01361.x Eckhardt, C.L., Van Velzen, A.S., Peters, M., et al., Factor VIII gene (F8) mutation and risk of inhibitor development in nonsevere hemophilia A, Blood, 2013, vol. 122, no. 11, pp. 1954—1962. https://doi.org/10.1182/blood-2013-02-483263 Schwaab, R., Pavlova, A., Albert, T., et al., Significance of F8 missense mutations with respect to inhibitor formation, Thromb. Haemostasis, 2013, vol. 109, no. 3, pp. 464—470. https://doi.org/10.1160/TH12-07-0521 Schwaab, R., Brackmann, H.H., Meyer, C., et al., Haemophilia A: mutation type determines risk of inhibitor formation, Thromb. Haemostasis, 1995, vol. 74, no. 6, pp. 1402—1406. https://doi.org/10.1055/s-0038-1649954 Oldenburg, J., El-Maarri, O., and Schwaab, R., Inhibitor development in correlation to factor VIII genotypes, Haemophilia, 2002, vol. 8, no. S2, pp. 23—29. https://doi.org/10.1046/j.1351-8216.2001.00134.x Gouw, S.C., Van Den Berg, H.M., Oldenburg, J., et al., F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis, Blood, 2012, vol. 119, no. 12, pp. 2922—2934. https://doi.org/10.1182/blood-2011-09-379453 Sauna, Z.E., Lozier, J.N., Kasper, C.K., et al., The intron-22-inverted F8 locus permits factor VIII synthesis: explanation for low inhibitor risk and a role for pharmacogenomics, Blood, 2015, vol. 125, no. 2, pp. 223—228. https://doi.org/10.1182/blood-2013-12-530113 Spena, S., Garagiola, I., Cannavò, A., et al., Prediction of factor VIII inhibitor development in the SIPPET cohort by mutational analysis and factor VIII antigen measurement, J. Thromb. Haemostasis, 2018, vol. 16, no. 4, pp. 778—790. https://doi.org/10.1111/jth.13961 Astermark, J., Oldenburg, J., Pavlova, A., et al., Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A, Blood, 2006, vol. 107, no. 8, pp. 3167—3173. https://doi.org/10.1182/blood-2005-09-3918 Astermark, J., Oldenburg, J., Carlson, J., et al., Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A, Blood, 2006, vol. 108, no. 12, pp. 3739—3746. https://doi.org/10.1182/blood-2006-05-024711 Astermark, J., Wang, X., Oldenburg, J., et al., Polymorphisms in the CTLA-4 gene and inhibitor development in patients with severe hemophilia A, J. Thromb. Haemostasis, 2007, vol. 5, pp. 263—265. https://doi.org/10.1111/j.1538-7836.2007.02290.x Lozier, J., Rosenberg, P.S., Goedert, J.J., and Menashe, I., A case-control study reveals immunoregulatory gene haplotypes that influence inhibitor risk in severe hemophilia A, Haemophilia, 2011, vol. 17, no. 4, pp. 641—649. https://doi.org/10.1111/j.1365-2516.2010.02473.x Pavlova, A., Delev, D., Lacroix-Desmazes, S., et al., Impact of polymorphisms of the major histocompatibility complex class II, interleukin-10, tumor necrosis factor-α and cytotoxic T-lymphocyte antigen-4 genes on inhibitor development in severe hemophilia A, J. Thromb. Haemostasis, 2009, vol. 7, no. 12, pp. 2006—2015. https://doi.org/10.1111/j.1538-7836.2009.03636.x Goodeve, A.C., Pavlova, A., and Oldenburg, J., Genomics of bleeding disorders, Haemophilia, 2014, vol. 20, no. S4, pp. 50—53. https://doi.org/10.1111/hae.12424 Pergantou, H., Varela, I., Moraloglou, O., et al., Impact of HLA alleles and cytokine polymorphisms on inhibitors development in children with severe haemophilia A, Haemophilia, 2013, vol. 19, no. 5, pp. 706—710. https://doi.org/10.1111/hae.12168 Kim, H.Y., Cho, J.H., Kim, H.J., et al., Ethnicity-specific impact of HLA I/II genotypes on the risk of inhibitor development: data from Korean patients with severe hemophilia A, Ann. Hematol., 2018, vol. 97, no. 9, pp. 1695—1700. https://doi.org/10.1007/s00277-018-3358-x De Barros, M.F., Herrero, J.C.M., Sell, A.M., et al., Influence of class I and II HLA alleles on inhibitor development in severe haemophilia A patients from the south of Brazil, Haemophilia, 2012, vol. 18, no. 3, pp. 236—240. https://doi.org/10.1111/j.1365-2516.2011.02604.x David, S., Nair, S.C., Singh, G.S., et al., Prevalence of FVIII inhibitors in severe haemophilia A patients: effect of treatment and genetic factors in an Indian population, Haemophilia, 2019, vol. 25, no. 1, pp. 67—74. https://doi.org/10.1111/hae.13633 Pandey, G.S., Yanover, C., Howard, T.E., and Sauna, Z.E., Polymorphisms in the F8 gene and MHC-II variants as risk factors for the development of inhibitory anti-factor VIII antibodies during the treatment of hemophilia A: a computational assessment, PLoS Comput. Biol., 2013, vol. 9, no. 5. e1003066. https://doi.org/10.1371/journal.pcbi.1003066 Pashov, A.D., Calvez, T., Gilardin, L., et al., In silico calculated affinity of FVIII-derived peptides for HLA class II alleles predicts inhibitor development in haemophilia A patients with missense mutations in the F8 gene, Haemophilia, 2014, vol. 20, no. 2, pp. 176—184. https://doi.org/10.1111/hae.12276 Shepherd, A.J., Skelton, S., Sansom, C.E., et al., A large-scale computational study of inhibitor risk in non-severe haemophilia A, Br. J. Haematol., 2015, vol. 168, no. 3, pp. 413—420. https://doi.org/10.1111/bjh.13131 Kempton, C.L. and Payne, A.B., HLA-DRB1-factor VIII binding is a risk factor for inhibitor development in nonsevere hemophilia: a case-control study, Blood Adv., 2018, vol. 2, no. 14, pp. 1750—1755. https://doi.org/10.1182/bloodadvances.2018019323 Zheng, C., Huang, D., Liu, L., et al., Interleukin-10 gene promoter polymorphisms in multiple myeloma, Int. J. Cancer, 2001, vol. 95, pp. 184—188. https://doi.org/10.1002/1097-0215(20010520)95:3<184::aid-ijc1031>3.0.co;2-v Huang, D., Zhou, Y., Xia, S., et al., Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease, J. Neuroimmunol., 1999, vol. 94, pp. 82—87. https://doi.org/10.1016/S0165-5728(98)00228-8 Pinto, P., Ghosh, K., and Shetty, S., Immune regulatory gene polymorphisms as predisposing risk factors for the development of factor VIII inhibitors in Indian severe haemophilia A patients, Haemophilia, 2012, vol. 18, no. 5, pp. 794—797. https://doi.org/10.1111/j.1365-2516.2012.02845.x Ulrich-Merzenich, G., Hausen, A., Zeitler, H., et al., The role of variant alleles of the mannose-binding lectin in the inhibitor development in severe hemophilia A, Thromb. Res., 2019, vol. 179, pp. 140—146. https://doi.org/10.1016/j.thromres.2019.05.005 Repessé, Y., Peyron, I., Dimitrov, J.D., et al., Development of inhibitory antibodies to therapeutic factor VIII in severe hemophilia A is associated with microsatellite polymorphisms in the HMOX1 promoter, Haematologica, 2013, vol. 98, no. 10, pp. 1650—1655. https://doi.org/10.3324/haematol.2013.084665 Eckhardt, C.L., Astermark, J., Nagelkerke, S.Q., et al., The Fc gamma receptor IIa R131H polymorphism is associated with inhibitor development in severe hemophilia A, J. Thromb. Haemostasis, 2014, vol. 12, no. 8, pp. 1294—1301. https://doi.org/10.1111/jth.12631 Bachelet, D., Albert, T., Mbogning, C., et al., Risk stratification integrating genetic data for factor VIII inhibitor development in patients with severe hemophilia A, PLoS One, 2019, vol. 14, no. 6. e0218258. https://doi.org/10.1371/journal.pone.0218258 Naderi, N., Yousefi, H., Mollazadeh, S., et al., Inflammatory and immune response genes: a genetic analysis of inhibitor development in Iranian hemophilia A patients, Pediatr. Hematol. Oncol., 2019, vol. 36, no. 1, pp. 28—39. https://doi.org/10.1080/08880018.2019.1585503 Gorski, M.M., Blighe, K., Lotta, L.A., et al., Whole-exome sequencing to identify genetic risk variants underlying inhibitor development in severe hemophilia A patients, Blood, 2016, vol. 127, no. 23, pp. 2924—2933. https://doi.org/10.1182/blood-2015-12-685735 Astermark, J., Altisent, C., Batorova, A., et al., Non-genetic risk factors and the development of inhibitors in haemophilia: a comprehensive review and consensus report, Haemophilia, 2010, vol. 16, no. 5, pp. 747—766. https://doi.org/10.1111/j.1365-2516.2010.02231.x ter Avest, P.C., Fischer, K., Mancuso, M.E., et al., Risk stratification for inhibitor development at first treatment for severe hemophilia A: a tool for clinical practice, J. Thromb. Haemostasis, 2008, vol. 6, pp. 2048—2054. https://doi.org/10.1111/j.1538-7836.2008.03187.x Gouw, S.C., van der Bom, J.G., and Berg, H.M., Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study, Blood, 2007, vol. 109, no. 11, pp. 4648—4654. https://doi.org/10.1182/blood-2006-11-056291 Chalmers, E.A., Brown, S.A., Keeling, D., et al., Early factor VIII exposure and subsequent inhibitor development in children with severe haemophilia A, Haemophilia, 2007, vol. 13, no. 2, pp. 149—155. https://doi.org/10.1111/j.1365-2516.2006.01418.x Ragni, M.V., FVIII, CD4, and liaisons dangereuses, Blood, 2011, vol. 117, no. 23, pp. 6060—6061. https://doi.org/10.1182/blood-2011-04-348458 Hashemi, S.M., Fischer, K., Moons, K.G.M., and Berg, H.M., Improved prediction of inhibitor development in previously untreated patients with severe haemophilia A, Haemophilia, 2015, vol. 21, no. 2, pp. 227—233. https://doi.org/10.1111/hae.12566 Henrard, S., Speybroeck, N., and Hermans, C., Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia, Haemophilia, 2015, vol. 21, no. 6, pp. 715—722. https://doi.org/10.1111/hae.12778 Franchini, M., Coppola, A., Mengoli, C., et al., Blood group O protects against inhibitor development in severe hemophilia A patients, Semin. Thromb. Haemostasis, 2017, vol. 43, no. 1, pp. 69—74. https://doi.org/10.1055/s-0036-1592166