Genetic Mapping of Quantitative Trait Loci (QTLs) Associated with Seminal Root Angle and Number in Three Populations of Bread Wheat (Triticum aestivum L.) with Common Parents
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64(6):1745–1753
Bektas H (2015) Dissection of quantitative trait loci (QTL) for root characters in bread wheat and determination of root traits in wild, landrace and modern wheats (doctoral dissertation). University of California, Riverside
Bengough AGG, Gordon DCC, Ellis RPP, Allan D, Keith R, Thomas WTB et al (2004) Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant Soil 262:63–70. https://doi.org/10.1023/B:PLSO.0000037029.82618.27
Canè MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R (2014) Association mapping for root architecture traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34:1629–1645
Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi AM, Jordan D, Mace E, Hammer G (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet 126(6):1563–1574
Comas L, Becker S, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4(442):1–16
Ehdaie B, Layne AP, Waines JG (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica 1;186(1):219-32
Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y (2012) Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil 354:395–405. https://doi.org/10.1007/s11104-011-1075-5
Kabir MR, Liu G, Guan P, Wang F, Khan AA, Ni Z, Yao Y, Hu Z, Xin M, Peng H, Sun Q (2015) Mapping QTL associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica 206:175–190
Landjeva SK, Neumann U, Lohwasser A, Börner (2008) Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant 52:259–266. https://doi.org/10.1007/s10535-008-0056-x
Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of 476 composite interval mapping. Genetics 175:361–374
Liu X, Li R, Chang X, Jing R (2013) Mapping QTL for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 189:51–66
Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. https://doi.org/10.1093/aob/mcs293
Ma CX, Wu R, Casella G (2004) FunMap: functional mapping of complex traits. Bioinformatics 20(1811):1808–1811
Manschadi AM, Christopher J, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837. https://doi.org/10.1071/FP06055
Manschadi AM, Hammer GL, Christopher JT, deVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129. https://doi.org/10.1007/s11104-007-9492-1
McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (1998) Catalogue of gene symbols for wheat. Proc. 9th Int. Wheat Genet Symp, Saskatoon, 5, 235
Melino VJ, Fiene G, Enju A, Cai J, Buchner P, Heuer S (2015) Genetic diversity for root plasticity and nitrogen uptake in wheat seedlings. Funct Plant Biol 42(10):942–956
Muqaddasi QH, Jayakodi M, Börner A, Röder MS (2019) Identification of consistent QTL with large effect on anther extrusion in doubled haploid populations developed from spring wheat accessions in German federal ex situ Genebank. Theor Appl Genet 132(11):3035–3045
Nakamoto T, Oyanagi A (1994) The direction of growth of seminal roots in Triticum aestivum L. and experimental modification thereof. Ann Bot 73:363–367
Nakamoto T, Oyanago A (1996) The configuration of the seminal roots of Triticum aestivum L. (Poaceae). J Plant Res 109:375–380
Oyanagi A (1994) Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivum L.). Plant Soil 165:323–326
Oyanagi A, Sato A, Wada M, Yamada T (1991) Inheritance of geotropic responses in wheat seminal roots. Jpn J Breed 41:181–184
Oyanagi A, Nakamoto T, Morita S (1993) The gravitropic response of roots and the shaping of the root system in cereal plants. Env Exp Bot 33:141–158
Petrarulo M, Marone D, Ferragonio P, Cattivelli L, Rubiales D, De Vita P et al (2015) Genetic analysis of root morphological traits in wheat. Mol Gen Genomics 290:785–806. https://doi.org/10.1007/s00438-014-0957-7
Pinto RS, Reynolds M (2015) Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor Appl Genet 128:575–585
Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9(1):23
Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49(12):1510–1527
Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11:13. https://doi.org/10.1186/s13007-015-0055-9
Robertson BM, Waines JG, Gill BS (1979) Genetic variability for seedling root numbers in wild and domesticated wheats. Crop Sci 19:843–847
Robinson H, Hickey L, Richard C, Mace E, Kelly A, Borrell A, Franckowiak J, Fox G (2016) Genomic regions influencing seminal root traits in barley. Plant Genome 9(1):1–13. https://doi.org/10.3835/plantgenome2015.03.0012
Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R (2007) Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol 151(3):291–305
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675
Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewski AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122(4):759–769
Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene× environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154(3):401–408
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1105
Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, 33(10.1371)
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796
Wang SX, Zhu YL, Zhang DX, Shao H, Liu P, Hu JB, Zhang H, Zhang HP, Chang C, Lu J, Xia XC (2017) Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PloS One 12(11):e0188662
Wu R, Cao J, Huang Z, Wang Z, Gai J, Vallejos E (2011) Systems mapping: how to improve the genetic mapping of complex traits through design principles of biological systems. BMC Syst Biol 5(1):84
Xie Q, Fernando KM, Mayes S, Sparkes DL (2017) Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot 119:1115–1129
Zhang H, Cui F, Wang H (2014) Detection of quantitative trait loci (QTLs) for seedling traits and drought tolerance in wheat using three related recombinant inbred line (RIL) populations. Euphytica 196:313–330