Genetic Factors of Reflex Epilepsies

N. A. Dudko1, С. С. Кунижева1, Т. В. Андреева1, I. Yu. Adrianova2, Evgeny I. Rogaev1
1Center for Genetics and Life Science, Sirius University of Science and Technology, 354340, pgt. Sirius, Krasnodar krai, Russia
2Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fisher, R.S., Acevedo, C., Arzimanoglou, A., et al., ILAE official report: a practical clinical definition of epilepsy, Epilepsia, 2014, vol. 55, no. 4, pp. 475—482. https://doi.org/10.1111/epi.12550

Dorothée, G.A. and Trenité, K.-N., Provoked and reflex seizures: surprising or common?, Epilepsia, 2012, vol. 53, pp. 105—113. https://doi.org/10.1111/j.1528-1167.2012.03620.x

Okudan, Z.V. and Özkara, Ç., Reflex epilepsy: triggers and management strategies, Neuropsychiatr. Dis. Treat., 2018, vol. 14, pp. 327—337. https://doi.org/10.2147/NDT.S107669

Koepp, M.J., Caciagli, L., Pressler, R.M., et al., Reflex seizures, traits, and epilepsies: from physiology to pathology, Lancet Neurol., 2016, vol. 15, no. 1, pp. 92—105. https://doi.org/10.1016/S1474-4422(15)00219-7

Holmes, G.L., Blair, S., Eisenberg, E., et al., Tooth-brushing-induced epilepsy, Epilepsia, 1982, vol. 23, no. 6, pp. 657—661. https://doi.org/10.1111/j.1528-1157.1982.tb05081.x

Bickford, R.G., Whelan, J.L., Klass, D.W., and Corbin, K.B., Reading epilepsy: clinical and electroencephalographic studies of a new syndrome, Trans. Am. Neurol. Assoc., 1956, pp. 100—102.

Syed, R., Hot water epilepsy: a rare form of reflex epilepsy, J. Neurosci. Rural Pract., 2010, vol. 1, no. 2, pp. 99—101. https://doi.org/10.4103/0976-3147.71724

Wei, F., Yan, L.M., Su, T., et al., Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy, Neurosci. Bull., 2017, vol. 3, no. 4, pp. 455—477. https://doi.org/10.1007/s12264-017-0134-1

Steinlein, O.K., Genetics and epilepsy, Dialogues Clin. Neurosci., 2008, vol. 10, no. 1, pp. 29—38. https://doi.org/10.31887/DCNS.2008.10.1/oksteinlein

Garbuz, D.G., Davletshin, A.A., Litvinova, S.A., et al., Rodent models of audiogenic epilepsy: genetic aspects, advantages, current problems and perspectives, Biomedicines, 2022, vol. 10, no. 11, pp. 29—34. https://doi.org/10.3390/biomedicines10112934

Perucca, P., Bahlo, M., and Berkovic, S.F., The genetics of epilepsy, Annu. Rev. Genomics Hum. Genet., 2020, vol. 21, pp. 205—230. https://doi.org/10.1146/annurev-genom-120219-074937

Wang, J., Lin, Z.J., Liu, L., et al., Epilepsy-associated genes, Seizure, 2017, vol. 44, pp. 11—20. https://doi.org/10.1016/j.seizure.2016.11.030

Thakran, S., Guin, D., Singh, P., et al., Genetic landscape of common epilepsies: advancing towards precision in treatment, Int. J. Mol. Sci., 2020, vol. 21, no. 20, pp. 77—84. https://doi.org/10.3390/ijms21207784

Scheffer, I.E., Berkovic, S., Capovilla, G., et al., ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology, Epilepsia, 2017, vol. 58, no. 4, pp. 512—521. https://doi.org/10.1111/epi.13709

Chen, Z., Brodie, M.J., Liew, D., and Kwan, P., Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study, JAMA Neurol., 2018, vol. 75, no. 3, pp. 279—286. https://doi.org/10.1001/jamaneurol.2017.3949

Avanzini, G., Musicogenic seizures, Ann. N.Y. Acad. Sci., 2003, vol. 999, no. 1, pp. 95—102. https://doi.org/10.1196/annals.1284.008

Critchley, M., Musicogenic epilepsy, Brain, 1937, pp. 6013—6027.

Sanchez-Carpintero, R., Patiño-Garcia, A., and Urrestarazu, E., Musicogenic seizures in Dravet syndrome, Dev. Med. Child Neurol., 2013, vol. 55, pp. 668—670. https://doi.org/10.1111/dmcn.12138

Ding, J., Li, X., Tian, H., Wang, L., et al., SCN1A mutation-beyond Dravet syndrome: a systematic review and narrative synthesis, Front. Neurol., 2021, vol. 12, pp. 743—726. https://doi.org/10.3389/fneur.2021.743726

Michelucci, R., Gardella, E., De Haan, G.J., et al., Telephone-induced seizures: a new type of reflex epilepsy, Epilepsia, 2004, vol. 45, pp. 280—283. https://doi.org/10.1111/j.0013-9580.2004.39703.x

Michelucci, R., Mecarelli, O., Bovo, G., et al., A de novo LGI1 mutation causing idiopathic partial epilepsy with telephone-induced seizures, Neurology, 2007, vol. 68, no. 24, pp. 2150—2151. https://doi.org/10.1212/01.wnl.0000264932.44153.3c

Brodtkorb, E., Michler, R.P., Gu, W., and Steinlein, O.K., Speech-induced aphasic seizures in epilepsy caused by LGI1 mutation, Epilepsia, 2005, vol. 46, pp. 963—966. https://doi.org/10.1111/j.1528-1167.2005.47104.x

Nobile, C., Michelucci, R., Andreazza, S., et al., LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy, Hum. Mutat., 2009, vol. 30, pp. 530—536. https://doi.org/10.1002/humu.20925

Chabrol, E., Navarro, V., Provenzano, G., et al., Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice, Brain, 2010, vol. 133, pp. 2749—2762. https://doi.org/10.1093/brain/awq171

Poletaeva, I.I., Surina, N.M., Kostina, Z.A., et al., The Krushinsky—Molodkina rat strain: the study of audiogenic epilepsy for 65 years, Epilepsy Behav., 2017, vol. 71, pp. 130—141. https://doi.org/10.1016/j.yebeh.2015.04.072

Dailey, J.W., Reigel, C.E., Mishra, P.K., and Jobe, P.C., Neurobiology of seizure predisposition in the genetically epilepsy-prone rat, Epilepsy Res., 1989, vol. 3, no. 1, pp. 3—17. https://doi.org/10.1016/0920-1211(89)90063-6

Garcia-Cairasco, N., Umeoka, E.H.L., and Cortes de Oliveira, J.A., The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: history and perspectives, Epilepsy Behav., 2017, vol. 71, part B, pp. 250—273. https://doi.org/10.1016/j.yebeh.2017.04.001

Garcia-Gomes, M.S.A., Zanatto, D.A., Galvis-Alonso, O.Y., et al., Behavioral and neurochemical characterization of the spontaneous mutation tremor, a new mouse model of audiogenic seizures, Epilepsy Behav., 2020, vol. 105, р. 106945.https://doi.org/10.1016/j.yebeh.2020.106945

Sánchez-Benito, D., Hyppolito, M.A., Alvarez-Morujo, A.J., et al., Morphological and molecular correlates of altered hearing sensitivity in the genetically audiogenic seizure-prone hamster GASH/Sal, Hear. Res., 2020, vol. 392, р. 107973. https://doi.org/10.1016/j.heares.2020.107973

López-López, D., Gómez-Nieto, R., Herrero-Turrión, M.J., et al., Overexpression of the immediate-early genes Egr1, Egr2, and Egr3 in two strains of rodents susceptible to audiogenic seizures, Epilepsy Behav., 2017, vol. 71, part B, pp. 226—237. https://doi.org/10.1016/j.yebeh.2015.12.020

Díaz-Casado, E., Gómez-Nieto, R., de Pereda, J.M., et al., Analysis of gene variants in the GASH/Sal model of epilepsy, PLoS One, 2020, vol. 15, no. 3, р. 0229953. https://doi.org/10.1371/journal.pone.0229953

Chernigovskaya, E.V., Korotkov, A.A., Dorofeeva, N.A., et al., Delayed audiogenic seizure development in a genetic rat model is associated with overactivation of ERK1/2 and disturbances in glutamatergic signaling, Epilepsy Behav., 2019, vol. 99, р. 106494. https://doi.org/10.1016/j.yebeh.2019.106494

Chuvakova, L.N., Funikov, S.Yu., Rezvykh, A.P., et al., Transcriptome of the Krushinsky—Molodkina audiogenic rat strain and identification of possible audiogenic epilepsy-associated genes, Front. Mol. Neurosci., 2022, vol. 14. https://doi.org/10.3389/fnmol.2021.738930

Bertocchi, I., Eltokhi, A., Rozov, A., et al., Voltage-independent GluN2A-type NMDA receptor Ca2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice, Commun. Biol., 2021, vol. 4, no. 59. https://doi.org/10.1038/s42003-020-01538-4

Gonzalez, D., Tomasek, M., Hays, S., et al., Audiogenic seizures in the Fmr1 knock-out mouse are induced by Fmr1 deletion in subcortical, VGlut2-expressing excitatory neurons and require deletion in the inferior colliculus, J. Neurosci., 2019, vol. 39, no. 49, pp. 9852—9863. https://doi.org/10.1523/JNEUROSCI.0886-19.2019

Skradski, S.L., Clark, A.M., Jiang, H., et al., A novel gene causing a mendelian audiogenic mouse epilepsy, Neuron, 2001, vol. 31, pp. 537—544. https://doi.org/10.1016/s0896-6273(01)00397-X

Charizopoulou, N., Lell, A., Schraders, M., et al., Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human, Nat. Commun., 2011, vol. 2, p. 201. https://doi.org/10.1038/ncomms1200

Petrova, N.V., Marakhonov, A.V., Balinova, N.V., et al., Genetic variant c.245A>G (p.Asn82Ser) in GIPC3 gene is a frequent cause of hereditary nonsyndromic sensorineural hearing loss in Chuvash population, Genes, 2021, vol. 12, р. 820. https://doi.org/10.3390/genes12060820

Garcia-Gomes, M.S.A., Yamamoto, P.K., Massironi, S.M.G., et al., Alteration of hippocampal Egr3, GABA A receptors, Il-1β, Il6 and Ccl3 expression in audiogenic tremor mice after seizure, Epilepsy Behav., 2022, vol. 137, part A, р. 108962. https://doi.org/10.1016/j.yebeh.2022.108962

Padmanaban, V., Inati, S., Ksendzovsky, A., and Zaghloul, K., Clinical advances in photosensitive epilepsy, Brain Res., 2019, vol. 1703, pp. 18—25. https://doi.org/10.1016/j.brainres.2018.07.025

Tauer, U., Lorenz, S., Lenzen, K.P., et al., Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy, Ann. Neurol., 2005, vol. 57, pp. 866—873. https://doi.org/10.1002/ana.20500

Stephani, U., Tauer, U., Koeleman, B., et al., Genetics of photosensitivity (photoparoxysmal response): a review, Epilepsia, 2004, vol. 4, pp. 19—23. https://doi.org/10.1111/j.0013-9580.2004.451008.x

Manis, A.M., Palygin, O., Isaeva, E., et al., KCNJ16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat, JCI Insight, 2021, vol. 6, no. 1, р. 143251. https://doi.org/10.1172/jci.insight.143251

Pinto, D., Westland, B., de Haan, C.-J., et al., Genome-wide linkage scan of epilepsy-related photoparoxysmal electroencephalographic response: evidence for linkage on chromosomes 7q32 and 16p13, Hum. Mol. Genet., 2005, vol. 14, no. 1, pp. 171—178. https://doi.org/10.1093/hmg/ddi018

Gupta, M., Polinsky, M., Senephansiri, H., et al., Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency, Neurobiol. Dis., 2004, vol. 16, no. 3, pp. 556—562. https://doi.org/10.1016/j.nbd.2004.04.008

Dervent, A., Gibson, K.M., Pearl, P.L., et al., Photosensitive absence epilepsy with myoclonias and heterozygosity for succinic semialdehyde dehydrogenase (SSADH) deficiency, Clin. Neurophysiol., 2004, vol. 115, no. 6, pp. 1417—1422. https://doi.org/10.1016/j.clinph.2004.01.002

Liao, M., Kundap, U., Rosch, R.E., et al., Targeted knockout of GABA-A receptor gamma 2 subunit provokes transient light-induced reflex seizures in zebrafish larvae, Dis. Model. Mech., 2019, vol. 12, no. 11, pp. 1—11. https://doi.org/10.1242/dmm.040782

Menon, R.N., Nambiar, P.N., Keni, R.R., et al., Drug-resistant “non-lesional” visual sensitive epilepsies of childhood—electroclinical phenotype—genotype associations, Neurol. India, 2021, vol. 69, no. 6, pp. 1701—1705. https://doi.org/10.4103/0028-3886.333508

Galizia, E.C., Myers, C.T., Leu, C., et al., CHD2 variants are a risk factor for photosensitivity in epilepsy, Brain, 2015, vol. 138, no. 5, pp. 198—207. https://doi.org/10.1093/brain/awv052

Dorothée, G.A., Trenité, K.-N., Volkers, L., et al., Clinical and genetic analysis of a family with two rare reflex epilepsies, Seizure, 2015, vol. 29, pp. 90—96. https://doi.org/10.1016/j.seizure.2015.03.020

Crippa, M., Malatesta, P., Bonati, M.T., et al., A familial t(4;8) translocation segregates with epilepsy and migraine with aura, Ann. Clin. Transl. Neurol., 2020, vol. 7, no. 5, pp. 855—859. https://doi.org/10.1002/acn3.51040

Shimizu, A., Asakawa, S., Sasaki, T., et al., A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3–q24.1, Biochem. Biophys. Res. Commun., 2003, vol. 309, no. 1, pp. 143—154. https://doi.org/10.1016/S0006-291X(03)01555-9

Sadleir, L.G., de Valles-Ibáñez, G., King, C., et al., Inherited RORB pathogenic variants: overlap of photosensitive genetic generalized and occipital lobe epilepsy, Epilepsia, 2020, vol. 61, pp. e23—e29. https://doi.org/10.1111/epi.16475

Liu, H., Aramaki, M., Fu, Y., and Forrest, D., Retinoid-related orphan receptor β and transcriptional control of neuronal differentiation, Curr. Top. Dev. Biol., 2017, vol. 125, pp. 227—255. https://doi.org/10.1016/bs.ctdb.2016.11.009

Lo Barco, T., Kaminska, A., Solazzi, R., et al., SYNGAP1-DEE: a visual sensitive epilepsy, Clin. Neurophysiol., 2021, vol. 132, no. 4, pp. 841—850. https://doi.org/10.1016/j.clinph.2021.01.014

Douaud, M., Feve, K., Pituello, F., et al., Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model, PLoS One, 2011, vol. 6, no. 10, р. 269332. https://doi.org/10.1371/journal.pone.0026932

Calame, D.G., Herman, I., and Riviello, J.J., A de novo heterozygous rare variant in SV2A causes epilepsy and levetiracetam-induced drug-resistant status epilepticus, Epilepsy Behav. Rep., 2021, vol. 7, no. 15, р. 100425. https://doi.org/10.1016/j.ebr.2020.100425

Wang, D., Zhou, Q., Ren, L., Lin, Y., et al., Levetiracetam-induced a new seizure type in a girl with a novel SV2A gene mutation, Clin. Neurol. Neurosurg., 2019, vol. 181, pp. 64—66. https://doi.org/10.1016/j.clineuro.2019.03.020

Serajee, F.J. and Huq, A.M., Homozygous mutation in synaptic vesicle glycoprotein 2A gene results in intractable epilepsy, involuntary movements, microcephaly, and developmental and growth retardation, Pediatr. Neurol., 2015, vol. 52, no. 6, pp. 642—646. https://doi.org/10.1016/j.pediatrneurol.2015.02.011

van Vliet, E.A., Aronica, E., Redeker, S., et al., Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy, Epilepsia, 2009, vol. 50, no. 3, pp. 422—433. https://doi.org/10.1111/j.1528-1167.2008.01727.x

Von Klopmann, T., Ahonen, S., Espadas-Santiuste, I., et al., Canine Lafora disease: an unstable repeat expansion disorder, Life (Basel). 2021, vol. 11, no. 7, р. 689. https://doi.org/10.3390/life11070689

Araya, N., Takahashi, Y., Shimono, M., et al., A recurrent homozygous NHLRC1 variant in siblings with Lafora disease, Hum. Genome. Var., 2018, vol. 5, p. 16. https://doi.org/10.1038/s41439-018-0015-9

Girges, C., Vijiaratnam, N. Wirth, T., et al., Seizures triggered by eating—a rare form of reflex epilepsy: a systematic review, Seizure, 2020, vol. 83, pp. 21—31. https://doi.org/10.1016/j.seizure.2020.09.013

Seneviratne, U., Seetha, T., Pathirana, R., and Rajapakse, P., High prevalence of eating epilepsy in Sri Lanka, Seizure, 2003, vol. 12, no. 8, pp. 604—605. https://doi.org/10.1016/s1059-1311(03)00110-9

Vercellino, F., Siri, L., Brisca, G., et al., Symptomatic eating epilepsy: two novel pediatric patients and review of literature, Ital. J. Pediatr., 2021, vol. 47, no. 1, p. 137. https://doi.org/10.1186/s13052-021-01051-2

Suls, A., Jaehn, J.A., Kecskés, A., et al., De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome, Am. J. Hum. Genet., 2013, vol. 93, no. 5, pp. 967—975. https://doi.org/10.1016/j.ajhg.2013.09.017

Rahman, S. and Copeland, W.C., POLG-related disorders and their neurological manifestations, Nat. Rev. Neurol., 2019, vol. 15, no. 1, pp. 40—52. https://doi.org/10.1038/s41582-018-0101-0

von Stülpnagel, C., Hartlieb, T., Borggräfe, I., et al., Chewing induced reflex seizures (“eating epilepsy”) and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: review of literature and report of 8 cases, Seizure, 2019, vol. 65, pp. 131—137. https://doi.org/10.1016/j.seizure.2018.12.020

Agarwal, M., Johnston, M.V., and Stafstrom, C.E., SYNGAP1 mutations: clinical, genetic, and pathophysiological features, Int. J. Dev. Neurosci., 2019, vol. 78, pp. 65—76. https://doi.org/10.1016/j.ijdevneu.2019.08.003

De Palma, L., Boniver, C., Cassina, M., et al., Eating-induced epileptic spasms in a boy with MECP2 duplication syndrome: insights into pathogenesis of genetic epilepsies, Epileptic Disord., 2012, vol. 14, no. 4, pp. 414—417. https://doi.org/10.1684/epd.2012.0546

Ramocki, M.B., Peters, S.U., Tavyev, Y.J., et al., Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome, Ann. Neurol., 2009, vol. 66, no. 6, pp. 771—782. https://doi.org/10.1002/ana.21715

Martínez, A.R., Colmenero, M.I.A., Pereira, A.G., et al., Reflex seizures in Rett syndrome, Epileptic Disord., 2011, vol. 13, no. 4, pp. 389—393. https://doi.org/10.1684/epd.2011.0475

Accogli, A., Wiegand, G., Scala, M., et al., Clinical and genetic features in patients with reflex bathing epilepsy, Neurology, 2021, vol. 97, no. 6, pp. 577—586. https://doi.org/10.1212/WNL.0000000000012298

Satishchandra, P., Hot-water epilepsy, Epilepsia, 2003, vol. 44, pp. 29—32. https://doi.org/10.1046/j.1528-1157.44.s.1.14.x

Krygier, M., Zawadzka, M., Sawicka, A., and Mazurkiewicz-Bełdzińska, M., Reflex seizures in rare monogenic epilepsies, Seizure, 2022, vol. 97, pp. 32—34. https://doi.org/10.1016/j.seizure.2022.03.004

Epi4K Consortium, De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies, Am. J. Hum. Genet., 2016, vol. 99, no. 2, pp. 287—298. https://doi.org/10.1016/j.ajhg.2016.06.003

Alehabib, E., Esmaeilizadeh, Z., Ranji-Burachaloo, S., et al., Clinical and molecular spectrum of P/Q type calcium channel Cav2.1 in epileptic patients, Orphanet J. Rare Dis., 2021, vol. 16, p. 461. https://doi.org/10.1186/s13023-021-02101-y

Danti, F.R., Galosi, S., Romani, M., et al., GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome, Neurol. Genet., 2017, vol. 3, no. 2, р. 143. https://doi.org/10.1212/NXG.0000000000000143

Mattioli, F., Hayot, G., Drouot, N., et al., De novo frameshift variants in the neuronal splicing factor NOVA2 result in a common C-terminal extension and cause a severe form of neurodevelopmental disorder, Am. J. Hum. Genet., 2020, vol. 106, no. 4, pp. 438—452. https://doi.org/10.1016/j.ajhg.2020.02.013

Peikes, T., Hartley, J., Mhanni, A., et al., Reflex seizures in a patient with CDKL5 deficiency disorder, Can. J. Neurol. Sci., 2019, vol. 46, no. 4, pp. 482—485. https://doi.org/10.1017/cjn.2019.29

Ullal, G.R., Satischandra, P., and Shankar, S.K., Hyperthermic seizures: an animal model for hot water epilepsy, Seizure, 1996, vol. 5, no. 3, pp. 221—228. https://doi.org/10.1016/s1059-1311(96)80040-9

Fukuda, M., Morimoto, T., Nagao, H., and Kida, K., Clinical study of epilepsy with severe febrile seizures and seizures induced by hot water bath, Brain Dev., 1997, vol. 19, no. 3, pp. 212—216. https://doi.org/10.1016/s0387-7604(96)00564-5

Ratnapriya, R., Satishchandra, P., Kumar, S.D., et al., A locus for autosomal dominant reflex epilepsy precipitated by hot water maps at chromosome 10q21.3-q22.3, Hum. Genet., 2009, vol. 125, pp. 541—549. https://doi.org/10.1007/s00439-009-0648-3

Ratnapriya, R., Satishchandra, P., Dilip, S., et al., Familial autosomal dominant reflex epilepsy triggered by hot water maps to 4q24-q28, Hum. Genet., 2009, vol. 126, no. 5, pp. 677—683. https://doi.org/10.1007/s00439-009-0718-6

Zhou, Q., Wang, J., Xia, L., Li, R., et al., SYN1 mutation causes X-linked toothbrushing epilepsy in a Chinese family, Front. Neurol., 2021, vol. 20, no. 12, р. 736977. https://doi.org/10.3389/fneur.2021.736977

Reijnders, M.R.F., Janowski, R., Alvi, M., et al., PURA syndrome: clinical delineation and genotype—phenotype study in 32 individuals with review of published literature, JMG, 2017, vol. 55, no. 2, pp. 1—10. https://doi.org/10.1136/jmedgenet-2017-104946

Solazzi, R., Fiorini, E., Parrini, E., et al., Early-onset bradykinetic rigid syndrome and reflex seizures in a child with PURA syndrome, Epileptic Disord., 2021, vol. 23, no. 5, pp. 745—748. https://doi.org/10.1684/epd.2021.1328

Menghi, V., Bissuli, F., Tinupir, F., and Nobili, L., Sleep-related hypermotor epilepsy: prevalence, impact and management strategies, Nat. Sci. Sleep., 2018, vol. 10, pp. 317—326. https://doi.org/10.2147/NSS.S152624

Tinuper, P., Bisulli, F., Cross, J.H., et al., Definition and diagnostic criteria of sleep-related hypermotor epilepsy, Neurology, 2016, vol. 86, no. 19, pp. 1834—1842. https://doi.org/10.1212/WNL.0000000000002666

Steinlein, O.K., Mulley, J.C., Propping, P., et al., A missense mutation in the neuronal nicotinic acetylcholine receptor alpha-4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy, Nat. Genet., 1995, vol. 11, no. 2, pp. 201—203. https://doi.org/10.1038/ng1095-201

Villa, C., Colombo, G., Meneghini, S., et al., CHRNA2 and nocturnal frontal lobe epilepsy: identification and characterization of a novel loss of function mutation, Front. Mol. Neurosci., 2019, vol. 12, р. 17. https://doi.org/10.3389/fnmol.2019.00017

Brodtkorb, E., Myren-Svelstad, S., Knudsen-Baas, K.M., et al., Precision treatment with nicotine in autosomal dominant sleep-related hypermotor epilepsy (ADSHE): an observational study of clinical outcome and serum cotinine levels in 17 patients, Epilepsy Behav., 2021, vol. 178, р. 106792. https://doi.org/10.1016/j.eplepsyres.2021.106792

Heron, S.E., Smith, K.R., Bahlo, M., et al., Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy, Nat. Genet., 2012, vol. 44, no. 11, pp. 1188—1190. https://doi.org/10.1038/ng.2440

Barcia, G., Fleming, M.R., Deligniere, A., et al., De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy, Nat. Genet., 2012, vol. 44, no. 11, pp. 1255—1259. https://doi.org/10.1038/ng.2441

Licchetta, L., Pippucci, T., Baldassari, S., et al., Sleep-related hypermotor epilepsy (SHE): contribution of known genes in 103 patients, Seizure, 2020, vol. 74, pp. 60—64. https://doi.org/10.1016/j.seizure.2019.11.009

Bar-Peled, L., Chantranupong, L., Cherniack, A.D., et al., A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to mTORC1, Science, 2015, vol. 340, no. 6136, pp. 1100—1106. https://doi.org/10.1126/science.1232044

Dibbens, L., de Vries, B., Donatello, S., et al., Mutations in DEPDC5 cause familial focal epilepsy with variable foci, Nat. Genet., 2013, vol. 45, pp. 546—551. https://doi.org/10.1038/ng.2599

Combi, R., Dalprà, L., Ferini-Strambi, L., and Tenchini, M.L., Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene, Ann. Neurol., 2005, vol. 58, pp. 899—904. https://doi.org/10.1002/ana.20660

Chen, Z., Wang, C., Zhuo, M., et al., Exome sequencing identified a novel missense mutation c.464G>A (p.G155D) in Ca2+-binding protein 4 (CABP4) in a Chinese pedigree with autosomal dominant nocturnal frontal lobe epilepsy, Oncotarget, 2017, vol. 8, pp. 78940—78947. https://doi.org/10.18632/oncotarget.20694

Horrocks, I.A., Nechay, A., Stephenson, J.B.P., et al., Anoxic-epileptic seizures: observational study of epileptic seizures induced by syncopes, Arch. Dis. Child., 2005, vol. 90, pp. 1283—1287. https://doi.org/10.1136/adc.2005.075408

Appleton, R.E., Reflex anoxic seizures, BMJ, 1993, vol. 24, no. 307(6898), pp. 214—215.https://doi.org/10.1136/bmj.307.6898.214

Ranza, E., Z’Graggen, W., Lidgren, M., et al., SCN8A heterozygous variants are associated with anoxic-epileptic seizures, Am. J. Med. Genet., Part A, 2020, vol. 182A, pp. 1209—1216. https://doi.org/10.1002/ajmg.a.61513

Anand, G., Collett-White, F., Orsini, A., et al., Autosomal dominant SCN8A mutation with an unusually mild phenotype, EJPN, 2016, vol. 20, no. 5, pp. 761—765. https://doi.org/10.1016/j.ejpn.2016.04.015

Gardella, E., Becker, F., Møller, R.S., et al., Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation, Ann. Neurol., 2016, vol. 79, no. 3, pp. 428—436. https://doi.org/10.1002/ana.24580

Cela, E. and Sjöström, P.J., Novel optogenetic approaches in epilepsy research, Front. Neurosci., 2019, vol. 13. https://doi.org/10.3389/fnins.2019.00947