Genetic Diversity and Phylogenetic Structures of Four Tibet Yak Populations Using CytB Gene Sequence of Mitochondrial DNA

Russian Journal of Genetics - Tập 58 - Trang 347-352 - 2022
Z. D. Pingcuo1,2, W. D. Basang1,2, Q. Zhang1,2, D. Z. Luosang1,2, K. J. Hua1,2, Y. L. Dawa1,2, Y. B. Zhu1,2, D. Ba1,2, D. J. Suolang1,2
1State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
2Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lasa, China

Tóm tắt

The yak is one of the important livestock unique to the pastoral areas of the Qinghai–Tibet Plateau. In this study, the genetic diversity and phylogenetic relationships of four yak populations in Tibet Naqu and Ali were assessed using mitochondrial cytochrome genes (CytB). Results showed that the full length of the CytB gene sequences of 129 yak individuals in the four populations was 1140 bp, and the average contents of T, C, A, and G were 26.3, 28.9, 31.7, and 13.1%, respectively. Twenty-one haplotypes were constructed with the full-length region of the CytB gene based on 29 single nucleotide polymorphism sites. The haplotype polymorphisms, nucleotide polymorphisms, and Tajima’s D of the four populations ranged from 0.59740 (Gaize Yak) to 0.69970 (Geji Yak), from 0.00214 (Geji Yak) to 0.00273 (Nima Yak), and from –1.4410 (Geji Yak) to –0.3370 (Gaize Yak), respectively. Specifically, the pairwise difference (FST) ranged from –0.03387 to 0.00383, indicating that the genetic divergence in these yak populations was low. The phylogeny and haplotype network analysis results implied that the four populations were mainly from two matrilineal origin linkages corresponding to two traditionally recognized matrilineal yak populations. Therefore, the genetic diversity in four yak populations with different geographical distributions was evaluated in this study to confirm the rich genetic diversity using CytB sequences. However, genetic differentiation among the populations was small. The result of this study will provide valuable theoretical basis for the diversity evaluation and conversion of domestic Tibet yaks.

Tài liệu tham khảo

Ma, Z.J., Zhong, J.C., Han, J.L., et al., Research progress on molecular genetic diversity of the yak (Bos grunniens), Yi Chuan, 2013, vol. 35, no. 2, pp. 151—160. https://doi.org/10.3724/sp.j.1005.2013.00151 Wiener, G., Han, J.L., and Long, R.J., The Yak, Bangkok: Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, 2003, 2nd ed. Gvozdanović, K., Margeta, V., Margeta, P., et al., Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism, Anim. Biotechnol., 2019, vol. 30, no. 3, pp. 242—251. https://doi.org/10.1080/10495398.2018.1478847 Ge, Q., Gao, C., Cai, Y., Jiao, T., et al., Evaluating genetic diversity and identifying priority conservation for seven Tibetan pig populations in China based on the mtDNA D-loop, Asian-Australas. J. Anim. Sci., 2020, vol. 33, no. 12. https://doi.org/10.5713/ajas.19.0752 Xia, X., Qu, K., Zhang, G., et al., Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle, Anim. Genet., 2019, vol. 50, no. 1, pp. 70—73. https://doi.org/10.1111/age.12749 Sharma, R., Kishore, A., Mukesh, M., et al., Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers, BMC Genet., 2015, vol. 16, p. 73. https://doi.org/10.1186/s12863-015-0221-0 Nisar, A., Waheed, A., Khan, S., et al., Population structure, genetic diversity and phylogenetic analysis of different rural and commercial chickens of Pakistan using complete sequence of mtDNA D-loop, Mitochondrial DNA, Part A, 2019, vol. 30, no. 2, pp. 273—280. https://doi.org/10.1080/24701394.2018.1484118 Englund, T., Strömstedt, L., and Johansson, A.M., Relatedness and diversity of nine Swedish local chicken breeds as indicated by the mtDNA D-loop, Hereditas, 2014, vol. 151, no. 6, pp. 229—233. https://doi.org/10.1111/hrd2.00064 Guo, H.W., Li, C., Wang, X.N., et al., Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds, Br. Poult. Sci., 2017, vol. 58, no. 5, pp. 490—497. https://doi.org/10.1080/00071668.2017.1332403 Hermes, T.R., Frachetti, M.D., Voyakin, D., et al., High mitochondrial diversity of domesticated goats persisted among Bronze and Iron Age pastoralists in the Inner Asian Mountain Corridor, PLoS One, 2020, vol. 15, no. 5. e0233333. https://doi.org/10.1371/journal.pone.0233333 E, G.X., Zhao, Y.J., Chen, L.P., et al., Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA, Ecol. Evol., 2018, vol. 8, no. 10, pp. 5111—5123. https://doi.org/10.1002/ece3.4100 Sziszkosz, N., Mihók, S., Jávor, A., and Kusza, S., Genetic diversity of the Hungarian Gidran horse in two mitochondrial DNA markers, Peer. J., 2016, vol. 4. e1894. eCollection 2016https://doi.org/10.7717/peerj.1894 Xiong, G., Wang, X.Q., Zhou, X.W., et al., Genetic variation in the Chinese soft-shell turtles (Pelodiscus spp.) revealed by sequences of mitochondrial Cytb gene, Mitochondrial DNA, Part A, 2019, vol. 30, no. 8, pp. 874—879. https://doi.org/10.1080/24701394.2019.1693551 Chen, L., Huang, J.R., Dai, J., et al., Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone, Genomics, 2019, vol. 111, no. 4, pp. 744—752. https://doi.org/10.1016/j.ygeno.2018.04.013 Bartáková, V., Bryja, J., Šanda, R., et al., High cryptic diversity of bitterling fish in the southern West Palearctic, Mol. Phylogenet. Evol., 2019, vol. 133, pp. 1—11. https://doi.org/10.1016/j.ympev.2018.12.025 Ji, W.B., Wang, H., Chai, Z.X., et al., Analysis on genetic diversity and phyletic evolution of mtDNA Cytb and ZFY gene in Tibetan yak, J. Domest. Anim. Ecol., 2019, vol. 40, no. 11, pp. 12—17. Li, J., Guo, L.J., Wang, L., et al., Analyses of genetic diversity and phylogeny of mtDNA D-loop from yak in Karakoram—Pamir area, China, Anim. Husb. Vet. Med., 2020, vol. 47, no. 8, pp. 2481—2492. https://doi.org/10.16431/j.cnki.1671-7236.2020.08.016 Hu, D., Zhong, J.C., and Chai, Z.X., Genetic diversity and phyletic evolution on mtDNA Cytb gene and D‑loop region of Taxkorgan Yak, Acta Ecol. Anim. Domest., 2018, vol. 39, no. 11, pp. 11—16. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187 Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4873—4880. https://doi.org/10.1093/nar/22.22.4673 Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054 Posada, D., jModelTest: phylogenetic model averaging, Mol. Biol. Evol., 2008, vol. 25, pp. 1253—1256. https://doi.org/10.1093/molbev/msn083 Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50. https://doi.org/10.1177/117693430500100003 Polzin, T. and Daneschmand, S.V., On Steiner trees and minimum spanning trees in hypergraphs, Oper. Res. Lett., 2003, vol. 31, no. 1, pp. 12—20. https://doi.org/10.1016/S0167-6377(02)00185-2 Catherine, C.D., James, G.D., Corey, H., et al., A tale of two markers: population genetics of Colorado rocky mountain bighorn sheep estimated from microsatellite and mitochondrial data, J. Wildl. Manage., 2015, vol. 79, no. 5, pp. 819—831. https://doi.org/10.1002/jwmg.895 Song, Q.Q., Zhong, J.C., Zhang, C.F., et al., Analysis on genetic diversity and phyletic evolution of mitochondrial DNA from Tibetan yaks, Acta Theriol. Sin., 2014, vol. 34, no. 004, pp. 356—365. https://doi.org/10.16829/j.slxb.2014.04.006 Huang, T., Research progress on evaluation and utilization of cattle genetic resources, Guizhou J. Anim. Husb. Vet. Med., 2014, vol. 38, no. 1, pp. 16—18. Zhang, J., Development status and countermeasures of organic animal husbandry of Plateau yak and Tibetan sheep, Anim. Breed. Feed, 2018, vol. 9, pp. 125—126. Mao, Y.J., The genetic diversity, genetic differentiation of six cattle populations in Bovidae in China and the statistical methods of genetic diversity research, Dissertation, Yangzhou: Yangzhou University, 2006. Deng, Y.F., Wang, J., Meng, Q.X., et al., Problems and development potential of Tibetan yak industry from the survey data of Sibu Village, Chin. J. Anim. Sci., 2015, vol. 51, no. S1, pp. 15—19. Wei, W. and Wu, Q.Q., Research and utilization of yak resources, Farm Staff, 2019, vol. 17, pp. 111—112. Mipam, T.D., Wen, Y.L., Fu, C.X., et al., Maternal phylogeny of a newly-found yak population in China, Int. J. Mol. Sci., 2012, vol. 13, no. 9, pp. 11455—11470. https://doi.org/10.3390/ijms130911455 Liu, W.X. and Ma, B.Y., Sequence analysis of mitochondrial DNA cytb gene in Gannan yak, Gansu Anim. Vet. Sci., 2019, vol. 49, no. 1, pp. 50—52. https://doi.org/10.15979/j.cnki.cn62-1064/s.2019.01.017 Cai, X., Chen, H., Lei, C.Z., et al., Diversity and phylogenetic analysis of the. cytb gene of three Chinese bovid species, J. Northwest A F Univ. (Nat. Sci. Ed.), 2007, vol. 2, pp. 43—46. https://doi.org/10.13207/j.cnki.jnwafu.2007.02.010 Ji, Q.M., Tang, Y.T., Zhang, C.F., et al., Genetic diversity and evolution relationship of Tibet yaks inferred from mtDNA cytb, Acta Vet. Zootechn. Sin., 2012, vol. 43, no. 11, pp. 1723—1732. Chang, G.B., Chang, H., Chen, R. et al., Genetic diversity and phylogenetic status of Bazhou yak based on partial sequences of cytb gene, Chin. J. Anim. Sci., 2010, vol. 46, no. 17, pp. 19—21. Tu, S.Y., Song, N.N., Chai, Z.X., and Zhong, J.C., Analysis on genetic diversity and phyletic evolution of mtDNA cytb gene in Zhongdian yak, China Anim. Husb. Vet. Med., 2016, vol. 43, no. 10, pp. 2680—2687. https://doi.org/10.16431/j.cnki.1671-7236.2016.10.025 Zhong, J.C., Chai, Z.X., Ji, Q.M., et al., Genetic diversity and phylogenetic analysis in Tibetan yaks, J. Southwest Minzu Univ. (Nat. Sci. Ed.), 2011, vol. 37, no. 3, pp. 368—378. Lai, S.J., Study on genetic diversity and molecular phylogeny in Chinese three species of cattle, Dissertation, Chengdu: Sichuan Agricultural University, 2004.