Genetic Characterization of Apulian Olive Germplasm as Potential Source in New Breeding Programs

Plants - Tập 8 Số 8 - Trang 268
Sion1, Francesca Taranto2, Cinzia Montemurro1, Mangini1, Camposeo3, Falco4, Gallo4, Giovanni Mita4, Olfa Saddoud Debbabi5, Amar6, Stefano Pavan1, Roseti1, Monica Marilena Miazzi1
1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
2Research Centre for Cereal and Industrial Crops, (CREA-CI), S.S. 71122 Foggia, Italy
3Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
4CNR Institute of Sciences of Food Production, Unit of Lecce, 73100 Lecce, Italy
5Banque Nationale de Gènes, Charguia 1, Tunis 1080, Tunisia
6Institut de l’Olivier, Route de l’aéroport, BP 1087, Sfax 3000, Tunisia

Tóm tắt

The olive is a fruit tree species with a century-old history of cultivation in the Mediterranean basin. In Apulia (Southern Italy), the olive is of main social, cultural and economic importance, and represents a hallmark of the rural landscape. However, olive cultivation in this region is threatened by the recent spread of the olive quick decline syndrome (OQDS) disease, thus there is an urgent need to explore biodiversity and search for genetic sources of resistance. Herein, a genetic variation in Apulian olive germplasm was explored, as a first step to identify genotypes with enhanced bio-agronomic traits, including resistance to OQDS. A preselected set of nuclear microsatellite markers allowed the acquisition of genotypic profiles, and to define genetic relationships between Apulian germplasm and widespread cultivars. The analysis highlighted the broad genetic variation in Apulian accessions and the presence of different unique genetic profiles. The results of this study lay a foundation for the organization of new breeding programs for olive genetic improvement.

Từ khóa


Tài liệu tham khảo

Belaj, 2012, Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits, Tree Genet. Genomes, 8, 365, 10.1007/s11295-011-0447-6

Sardaro, 2018, Community preferences in support of a conservation programme for olive landraces in the Mediterranean area, Acta Hortic., 1199, 183, 10.17660/ActaHortic.2018.1199.30

Famiani, 2019, The cost of flowering in olive (Olea europaea L.), Sci. Hortic., 252, 268, 10.1016/j.scienta.2019.03.008

Boskou, D. (2015). Table Olives as Sources of Bioactive Compounds. Olives and Olive Oil Bioactive Constituents, AOCS Press.

Boskou, D. (2015). Research and Innovative Approaches to Obtain Virgin Olive Oils with a Higher Level of Bioactive Constituents. Olives and Olive Oil Bioactive Constituents, AOCS Press.

Sardaro, 2015, Measuring the value of rural landscape in support of preservation policies, Scienze Regionali, 14, 125

(2019, May 20). ISTAT 2018. Available online: http://dati.istat.it.

Besnard, G., Khadari, B., Navascués, M., Fernández-Mazuecos, M., El Bakkali, A., Arrigo, N., Baali-Cherif, D., Brunini-Bronzini de Caraffa, V., Santoni, S., and Vargas, P. (2013). The complex history of the olive tree: From late quaternary diversification of mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B Biol. Sci., 280.

Vossen, 2007, Olive oil: History, production, and characteristics of the world’s classic oils, HortScience, 42, 1093, 10.21273/HORTSCI.42.5.1093

Diez, 2015, Olive domestication and diversification in the mediterranean basin, New Phytol., 206, 436, 10.1111/nph.13181

Besnard, 2016, Single vs multiple independent olive domestications: The jury is (still) out, New Phytol., 209, 466, 10.1111/nph.13518

Muzzalupo, I., Vendramin, G.G., and Chiappetta, A. (2014). Genetic Biodiversity of Italian Olives (Olea europaea) Germplasm Analyzed by SSR Markers. Sci. World J., 2014.

D’Agostino, N.D., Taranto, F., Camposeo, S., Mangini, G., Fanelli, V., Gadaleta, S., Miazzi, M.M., Pavan, S., di Rienzo, V., and Sabetta, W. (2018). GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Sci. Rep., 26.

Miazzi, 2018, The preservation and characterization of Apulian olive germplasm biodiversity, Acta Hortic., 1199, 1

Binetti, 2017, Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data, Food Chem., 219, 131, 10.1016/j.foodchem.2016.09.041

Sabetta, 2017, Development and application of protocols to certify the authenticity and the traceability of Apulian typical products in olive sector, Rivista Italiana Delle Sostanze Grasse, 94, 37

Pasqualone, 2016, Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers, J. Sci. Food Agric., 96, 3642, 10.1002/jsfa.7711

Sion, 2018, Genetic flow among olive populations within the Mediterranean basin, Peer J., 6, e5260, 10.7717/peerj.5260

Tanasijevic, 2014, Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region, Agric. Water Manag., 144, 54, 10.1016/j.agwat.2014.05.019

Ponti, 2014, Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers, Proc. Natl. Acad. Sci. USA, 111, 5598, 10.1073/pnas.1314437111

Martelli, 2016, The current status of the quick decline syndrome of olive in southern Italy, Phytoparasitica, 44, 1, 10.1007/s12600-015-0498-6

Cornara, 2017, Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants, J. Appl. Entomol., 141, 80, 10.1111/jen.12365

Giampetruzzi, A., Morelli, M., Saponari, M., Loconsole, G., Chiumenti, M., Boscia, D., Savino, V.N., Martelli, G.P., and Saldarelli, P. (2016). Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genom., 17.

Saponari, 2017, Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy, Sci. Rep., 7, 17723, 10.1038/s41598-017-17957-z

Bau, 2017, Susceptibility of Olea europaea L. varieties to Xylella fastidiosa subsp. pauca ST53: Systematic literature search up to 24 March 2017, EFSA J., 15, e04772

Taranto, 2016, Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.), J. Agric. Food Chem., 64, 5824, 10.1021/acs.jafc.6b01737

Pavan, 2017, Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion, Physiol. Mol. Biol. Plants, 23, 197, 10.1007/s12298-016-0397-4

Boucheffa, 2017, The coexistence of oleaster and traditional varieties affects genetic diversity and population structure in Algerian olive (Olea europaea) germplasm, Genet. Resour. Crop Evol., 64, 379, 10.1007/s10722-016-0365-4

Mariotti, 2016, Development, evaluation, and validation of new EST-SSR markers in olive (Olea europaea L.), Tree Genet. Genomes, 12, 120, 10.1007/s11295-016-1077-9

Veloso, M.M., Simões-Costa, M.C., Carneiro, L.C., Guimarães, J.B., Mateus, C., Fevereiro, P., and Candido, P.R. (2018). Olive Tree (Olea europaea L.) diversity in traditional small farms of Ficalho, Portugal. Diversity, 10.

Besnard, 2001, Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars, Theor. Appl. Genet., 102, 251, 10.1007/s001220051642

Besnard, 2001, Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs, Genet. Sel. Evol., 33, 251, 10.1186/BF03500883

Rao, 2009, Molecular diversity and genetic relationships of southern Italian olive cultivars as depicted by AFLP and morphological traits, J. Hortic. Sci. Biotechnol., 84, 261, 10.1080/14620316.2009.11512514

Montemurro, 2005, Genetic relationships and cultivar identification among 112 olive accessions using AFLP and SSR markers, J. Hortic. Sci. Biotechnol., 80, 105, 10.1080/14620316.2005.11511899

Taranto, F., D’Agostino, N., Greco, B., Cardi, T., and Tripodi, P. (2016). Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genom., 17.

Pavan, S., Marcotrigiano, A.R., Ciani, E., Mazzeo, R., Zonno, V., Ruggieri, V., Lotti, C., and Ricciardi, L. (2017). Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genom., 18.

Taranto, 2018, SNP diversity in an olive germplasm collection, Acta Hortic., 1199, 27, 10.17660/ActaHortic.2018.1199.5

Boucheffa, S., Tamendjari, A., Sanchez-Gimeno, A.C., Rovellini, P., Venturini, S., di Rienzo, V., Miazzi, M.M., and Montemurro, C. (2019). Diversity Assessment of Algerian Wild and Cultivated Olives (Olea europaea L.) by Molecular, Morphological, and Chemical Traits. Eur. J. Lipid Sci. Technol., 121.

Baldoni, 2009, A consensus list of microsatellite markers for olive genotyping, Mol. Breed., 24, 213, 10.1007/s11032-009-9285-8

Cipriani, 2002, Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars, Theor. Appl. Genet., 104, 223, 10.1007/s001220100685

Pasqualone, 2013, Traceability of PDO Italian table olives by means of microsatellite molecular markers, J. Agric. Food Chem., 61, 3068, 10.1021/jf400014g

Montemurro, 2015, Traceability of PDO olive oil “terra di Bari” using high resolution melting, J. Chem., 2015, 496986, 10.1155/2015/496986

Pasqualone, 2015, High resolution melting analysis of DNA microsatellites in olive pastes and virgin olive oils obtained by talc addition, Eur. J. Lipid Sci. Technol., 117, 2044, 10.1002/ejlt.201400654

Rugini, E., Baldoni, L., Muleo, R., and Sebastiani, L. (2016). The Olive Tree Genome, Springer.

Laib, 2012, Characterisation and identification of olive cultivars from North-eastern Algeria using molecular markers, J. Hortic. Sci. Biotechnol., 87, 95, 10.1080/14620316.2012.11512837

Rekik, 2008, Characterization and identification of tunisian olive tree varieties by microsatellite markers, HortScience, 43, 1371, 10.21273/HORTSCI.43.5.1371

Ahuja, 2016, Genetic diversity and conservation of olive genetic resources, Genetic Diversity and Erosion in Plants: Case Histories, Volume 8, 337, 10.1007/978-3-319-25954-3_10

Montemurro, 2019, Self-incompatibility assessment of some Italian olive genotypes (Olea europaea L.) and cross-derived seedling selection by SSR markers on seed endosperms, Front. Plant Sci., 451, 10

Bracci, 2009, SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria, Sci Hortic., 122, 209, 10.1016/j.scienta.2009.04.010

Viscosi, 2011, Integration between molecular and morphological markers for the exploitation of olive germoplasm (Olea europaea), Sci. Hortic. (Amst.), 130, 229, 10.1016/j.scienta.2011.06.050

Marra, 2013, Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers, Tree Genet. Genomes, 9, 961, 10.1007/s11295-013-0609-9

Hauville, 1953, La répartition des variétés d’olivers en Algérie et ses conséquences pratiques, Bulletin de la Société desAgriculteurs d’ Álgérie, 580, 1

Abdessemed, 2015, Assessment of genetic diversity among Algerian olive (Olea europaea L.) cultivars using SSR marker, Sci. Hortic. (Amst.), 192, 10, 10.1016/j.scienta.2015.05.015

Tubeileh, 2008, Morphological and productive aspects offour syrian olive cultivars, Acta Hortic., 791, 415, 10.17660/ActaHortic.2008.791.61

Abdelhamid, 2013, Genetic similarity among Tunisian cultivated olive estimated through SSR markers, Sci. Agric., 70, 33, 10.1590/S0103-90162013000100006

Jombart, T., Devillard, S., and Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet., 11.

Taranto, F., Nicolia, A., Pavan, S., De Vita, P., and D’Agostino, N. (2018). Biotechnological and digital revolution for climate-smart plant breeding. Agronomy, 8.

Wright, 1949, The genetical structure of populations, Ann. Eugen., 15, 323, 10.1111/j.1469-1809.1949.tb02451.x

Peakall, 2012, GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 28, 2537, 10.1093/bioinformatics/bts460

Botstein, 1980, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 32, 314

Kalinowski, 2007, Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment, Mol. Ecol., 16, 1099, 10.1111/j.1365-294X.2007.03089.x

Lynch, 1999, Estimation of pairwise relatedness with molecular markers, Genetics, 152, 1753, 10.1093/genetics/152.4.1753

Pritchard, 2000, Inference of population structure using multilocus genotype data, Genetics, 155, 945, 10.1093/genetics/155.2.945

Earl, 2012, STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 4, 359, 10.1007/s12686-011-9548-7

Evanno, 2005, Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study, Mol. Ecol., 14, 2611, 10.1111/j.1365-294X.2005.02553.x

Felsenstein, 1985, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, 39, 783, 10.2307/2408678