Genetic Algorithm-Based SOTIF Scenario Construction for Complex Traffic Flow
Tóm tắt
Từ khóa
Tài liệu tham khảo
Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 1821–1827 (2018)
Namazi, E., Li, J., Lu, C.: Intelligent intersection management systems considering autonomous vehicles: a systematic literature review. IEEE 7, 91946–91965 (2019)
Gao, F., Duan, J., He, Y.: A test scenario automatic generation strategy for intelligent driving systems. Math. Probl. Eng. (2019)
Duan, J., Gao, F., He, Y.: Test scenario generation and optimization technology for intelligent driving systems. IEEE Intell. Transp. Syst. Mag. 14(1), 115–127 (2022)
Klück, F., Li, Y., Nica, M., et al.: Using ontologies for test suites generation for automated and autonomous driving functions. In: 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, 118–123 (2018)
Koopman, P.: Challenges in autonomous vehicle validation: keynote presentation abstract. In: Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles, 3–3 (2017)
Tuncali, C.E., Fainekos, G., Prokhorov, D., et al.: Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Trans. Intell. Veh. 5(2), 265–280 (2019)
Beglerovic, H., Stolz, M., Horn, M., et al.: Testing of autonomous vehicles using surrogate models and stochastic optimization. In: 2017 20st International conference on intelligent transportation systems (ITSC), IEEE, 1–6 (2017)
Lee, R., Kochenderfer, M.J., Mengshoel, O.J., et al.: Adaptive stress testing of airborne collision avoidance systems. In: 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), IEEE, 6C2-1-6C2-13 (2015)
Du, P., Driggs-Campbell, K.: Finding diverse failure scenarios in autonomous systems using adaptive stress testing. SAE Int. J. Connect. Autom. Veh., 2(12-02-04-0018): 241–251 (2019)
Klischat, M., Althoff, M.: Generating critical test scenarios for automated vehicles with evolutionary algorithms. In: 2019 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2352–2358 (2019)
Elrofai, H., Worm, D., Op den Camp, O.: Scenario Identification for Validation of Automated Driving Functions. Springer, Cham (2016)
Krajewski, R., Moers, T., Nerger, D., et al.: Data-driven maneuver modeling using generative adversarial networks and variational autoencoders for safety validation of highly automated vehicles. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2383–2390 (2018)
Milakis, D., Snelder, M., Van, Arem. B., et al.: Development and transport implications of automated vehicles in the Netherlands: scenarios for 2030 and 2050. Eur. J. Transp. Infrastruct. Res. 17(1) (2017)
Geyer, S., Baltzer, M., Franz, B., et al.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. IET. Intell. Transp. Syst 8(3), 183–189 (2013)
De Gelder, E., Paardekooper, J.-P., Saberi, A.K., et al.: Ontology for scenarios for the assessment of automated vehicles. https://arxiv.org/abs/2001.11507. Accessed 3 Feb 2020
Ulbrich, S., Menzel, T., Reschka, A., et al.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, IEEE, 982–988 (2015)
De Gelder, E., Paardekooper, J.P., Saberi, A.K., et al.: Ontology for scenarios for the assessment of automated vehicles. arXiv:2001.11507 (2020)
Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 1813–1820 (2018)
Amersbach, C., Winner, H.: Defining required and feasible test coverage for scenario-based validation of highly automated vehicles. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 425–430 (2019)
Kirovskii, O.M., Gorelov, V.A.: Driver assistance systems: analysis, tests and the safety case. In: ISO 26262 and ISO PAS 21448. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 534(1): 012019 (2019)
ISO 34502: Road Vehicles—Test Scenarios for Automated Driving Systems—Scenario Based Safety Evaluation Framework, 2020, 1st version
Zhang, P., Zhu, B., Zhao, J., et al.: Performance evaluation method for automated driving system in logical scenario. Automot. Innov. 5(3), 299–310 (2022)
Wu, S., Wang, H., Yu, W., et al.: A new SOTIF scenario hierarchy and its critical test case generation based on potential risk assessment. In: 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), IEEE, 399–409 (2021)
Wang, H., Huang, Y., Khajepour, A., et al.: Crash mitigation in motion planning for autonomous vehicles. IEEE. Trans. Intell. Transp. Syst. 20(9), 3313–3323 (2019)
Werling, M., Ziegler, J., Kammel, S., et al.: Optimal trajectory generation for dynamic street scenarios in a frenet frame. In: 2010 IEEE International Conference on Robotics and Automation, IEEE, 987–993 (2010)
R157: UN Regulation No. 157—Automated Lane Keeping Systems (ALKS), 2021, 1st version
ISO 26262: Road Vehicles—Functional Safety, International Organization for Standardization, 2011, 1st version
Minderhoud, M.M., Bovy, P.H.L.: Extended time-to-collision measures for road traffic safety assessment. Accid. Anal. Prev. 33(1), 89–97 (2001)
Cooper, P.J.: Experience with traffic conflicts in Canada with emphasis on “post encroachment time” techniques. In: International Calibration Study of Traffic Conflict Techniques. Springer, Berlin, Heidelberg, pp. 75–96 (1984)