Genesis of mineralized cavities (Miaroles) in granitic pegmatites and granites
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. S. Abramov, “Formation of Fluorine-Rich Magmas by Fluid Filtration through Silicic Magmas: Petrological and Geochemical Evidence of Metamagmatism,” Petrologiya 12(1), 22–45 (2004) [Petrology 12, 17–36 (2004)].
O. Bachmann and G. W. Bergantz, “On the Origin of Crystal-Poor Rhyolites Extracted from Batholithic Crystal Mushes,” J. Petrol. 45, 1565–1582 (2004).
D. R. Baker, “Granitic Melt Viscosities: Empirical and Configurational Entropy Models for Their Calculation,” Amer. Mineral. 81, 126–134 (1996).
D. R. Baker, P. Lang, G. Robert, J-F. Bergevin, E. Allard, and L. Bai, “Bubble Growth in Slightly Supersaturated Albite Melt at Constant Pressure,” Geochim. Cosmochim. Acta 70, 1821–1838 (2006).
D. R. Baker and J. Vaillancourt, “The Low Viscosities of F and H2O-Bearing Granitic Melts and Implications for Melt Extraction and Transport,” Earth Planet. Sci. Lett. 132, 199–211 (1995).
V. N. Balashov, G. P. Zaraiskii, and R. Zel’tman, “Fluid-Magma Interaction and Oscillatory Phenomena during Crystallization of Granitic Melt by Accumulation and Escape of Water and Fluorine,” Petrologiya 8(6), 563–585 (2000) [Petrology 8, 505–524 (2000)].
Y. Bottinga and D. F. Weill, “Densities of Liquid Silicate Systems Calculated from Partial Molar Volumes of Oxide Components,” Amer. J. Sci. 269, 169–182 (1970).
E. Bourgue and P. Richet, “The Effects of Dissolved CO2 on the Density and Viscosity of Silicate Melts: A Preliminary Study,” Earth Planet. Sci. Lett. 193, 57–68 (2001).
G. Brandeis and C. Jaupart, “On the Interaction between Convection and Crystallization in a Cooling Magma Chamber,” Earth Plan. Sci. Lett. 77, 345–361 (1986).
G. Brandeis and B. D. Marsh, “The Convection Liquidus in a Solidifying Magma Chamber: A Fluid Dynamic Investigation,” Nature 339(6226), 613–616 (1989).
C. W. Burnham and H. Ohmoto, “Late-Stage Processes of Felsic Magmatism,” Mining Geology. Spec. issue, No. 8, 1–11 (1980).
P. A. Candela and S. L. Blevin, “Do Some Miarolitic Granites Preserve Evidence of Magmatic Volatile Phase Permeability,” Econ. Geol. 90, 2310–2316 (1995).
G.-N. Chen and R. Grapes, Granite Genesis: In situ Melting and Crustal Evolution (Springer-Verlag, Berlin-Heidelberg-Dordrecht, 2007).
D. B. Dingwell, K. U. Hess, and R. Knoche, “Granite and Granitic Pegmatite Melts: Volumes and Viscosities,” R. Soc. Edinburgh Trans. Earth Sci. 87, 65–72 (1996b).
D. B. Dingwell, R. Knoche, S. L. Webb, and M. Pichavant, “The Effect of B2O3 on the Viscosity of Haplogranitic Melts,” Am. Mineral. 77, 457–461 (1992).
D. B. Dingwell, M. Pichavant, and F. Holtz, “Experimental Studies of Boron in Granitic Melts,” in Boron: Mineralogy, Petrology and Geochemistry, Ed. by E. S. Grew and L. M. Anovitz, Rev. Mineral. 33, 331–385 (1996a).
N. L. Dobretsov, A. G. Kidryashkin, and A. A. Kidryashkin, Deep Geodynamics (SO RAN, Fil. TGEOU, Novosibirsk, 2001) [in Russian].
J. E. Gardner, “Bubble Coalescence in Rhyolitic Melts during Decompression from High Pressure,” J. Volcanol. Geotherm. Res. 166, 161–176 (2007a).
J. E. Gardner, “Heterogeneous Bubble Nucleation in Highly Viscous Silicate Melts during Instantaneous Decompression from High Pressure,” Chem. Geol. 236, 1–12 (2007b).
J. E. Gardner and M.-H. Denis, “Heterogeneous Bubble Nucleation on Fe-Ti Crystals in High-Silica Rhyolitic Melts,” Geochim. Cosmochim. Acta 68, 3587–3597 (2004).
J. E. Gardner, M. Hilton, and M. R. Carrol, “Bubble Growth in Highly Viscous Silicate Melts during Continuous Decompression from High Pressure,” Geochim. Cosmochim. Acta. 64, 1473–1483 (2000).
D. Giordano, C. Romano, D. B. Dingwell, B. Poe, and H. Behrens, “The Combined Effects of Water and Fluorine on the Viscosity of Silicic Magmas,” Geochim. Cosmochim. Acta. 68, 5159–5168 (2004).
V. S. Golubev and V. N. Sharapov, Dynamics of Endogenous Ore Formation (Nedra, Moscow, 1974) [in Russian].
I. Haapala, “Magmatic and Postmagmatic Processes in Tin-Mineralized Granites: Topaz-Bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland,” J. Petrol. 38, 1654–1659 (1997).
K. U. Hess and D. B. Dingwell, “Viscosities of Hydrous Leucogranitic Melts: A Non-Arrhenian Model,” Am. Mineral. 81, 1297–1300 (1996).
F. Holtz, H. Behrens, and D. B. Dingwell, “The Effects of F, B2O3 and P2O5 on the Solubility of Water in Haplogranitic Melts Compared to Silicate Melts,” Contrib. Mineral. Petrol. 113, 492–501 (1993).
F. Holtz, W. Johannes, N. Tamic, H. Behrens, “Maximum and Minimum Water Contents of Granitic Melts Generated in the Crust: An Evaluation and Implications,” Lithos 56, 1–14 (2001).
S. Hurwitz and O. Navon, “Bubble Nucleation in Rhyolitic Melts: Experiments at High Pressure, Temperature and Water Content,” Earth Planet. Sci. Lett. 122, 267–280 (1994).
J. C. Jaeger, “Cooling and Solidification of Igneous Rocks,” in Basalts, The Poldervaart Treatise on Rocks of Basaltic Composition, Ed. by au]H. H. Hess and A. Poldervaart (Wiley, New York, 1968), pp. 503–537.
R. H. Jahns and C. M. Burnham, “Experimental Studies of Pegmatite Genesis. I. A Model of the Derivation and Crystallization of Granitic Pegmatites,” Econ. Geol. 64, 843–864 (1969).
A. S. Kalinin and E. N. Vasil’eva, “Convection of Melts in Vertical Magmatic Chambers,” Dokl. Akad. Nauk SSSR 210(6), 1435–1438 (1973).
R. Knoche, D. B. Dingwell, and S. L. Webb, “Melt Densities for Leucogranites and Granitic Pegmatites: Partial Molar Volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3,” Geochim. Cosmochim. Acta 59, 4645–4652 (1995).
O. N. Kosukhin, I. T. Bakumenko, and V. P. Chupin, Magmatic Stage of the Formation of Granite Pegmatites (Nauka, Novosibirsk, 1984) [in Russian].
T. Kuritani, T. Yokoyama, and E. Nakamura, “Rates of Thermal and Chemical Evolution of Magmas in Cooling Magma Chamber: A Chronological and Theoretical Study on Basaltic and Andesitic Lavas from Rishiri Volcano, Japan,” J. Petrol. 48, 1295–1319 (2007).
R. A. Lange, “The Effects of H2O, CO2 and F on the Density and Viscosity of Silicate melts,” Rev. Mineral. 30, 331–369 (1994).
R. A. Lange and I. S. E. Carmichael, “Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 Liquids: New Measurements and Derived Partial Molar Properties,” Geochim. Cosmochim. Acta 53, 2195–2204 (1987).
J. F. Larsen, “Heterogeneous Bubble Nucleation and Disequlibrium H2O Exsolution in Vesuvius K-phonolite Melts,” J. Volcanol. Geotherm. Res. 175, 278–288 (2008).
J. F. Larsen, M-H. Denis, and J. E. Gadner, “Experimental Study of Bubble Coalescence in Rhyolitic and Phonolitic Melts,” Geochim. Cosmochim. Acta. 68(2), 333–344 (2004).
D. London, Pegmatites, Can. Mineral. Spec. Publ. 10, (2008).
D. London, “The Magmatic-Hydrothermal Transition in the Tanco Rare-Element Pegmatite: Evidence from Fluid Inclusions and Phase Equilibrium Experiments,” Am. Mineral. 71, 376–395 (1986).
J. B. Lowenstern, “Dissolved Volatile Concentrations in an Ore-Forming Magma,” Geology 22, 893–896 (1994).
V. Lyakhovsky, S. Hurwitz, and O. Navon, “Bubble Growth in Rhyolitic Melts: Experimental and Numerical Investigation,” Bull. Volcanol. 58, 19–32 (1996).
V. I. Mal’kovskii, A. A. Pek, A. P. Aleshin, and V. I. Velichkin, “Estimation of the Time of Magma Chamber Solidification beneath the Strel’tsovka Caldera and Its Effect on the Nonstationary Temperature Distribution in the Upper Crust, the Eastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 50(3), 217–224 (2008) [Geol. Ore Dep. 50, 192–198 (2008)].
D. A. C. Manning and M. Pichavant, “The Role of F and B in the Generation of Granitic Melts,” in Migmatites, Melting and Metamorphism, Ed. by M. P. Atherton and C. D. Gribble, (Shiva Geology Series, Glasgow, 1983).
Y. Morizet, A. R. L. Nichols, S. C. Kohn, R. A. Brooker, and D. B. Dingwell, “The Influence of H2O and CO2 on the Glass Transition Temperature: Insights into the Effects of Volatiles on Magma Viscosity,” Eur. J. Mineral. 19, 657–669 (2007).
C. C. Mourtada-Bonnefoi and D. Laporte, “Kinetics of Bubble Nucleation in Rhyolitic Melt: An Experimental Study of Effect of Ascent Rate,” Earth Planet. Sci. Lett. 218, 521–537 (2004).
V. B. Naumov and G. B. Naumov, “Mineral-Forming Fluids and Physicochemical Regularities of their Evolution,” Geokhimiya, No. 10, 1450–1460 (1980).
F. A. Ochs and R. A. Lange, “The Density of Hydrous Magmatic Liquids,” Science 283, 1314–1317 (1999).
F. A. Och and R. A. Lange, “The Partial Molar Volume, Thermal Expansivity, and Compressibility of H2O in NaAlSi3O8 Liquid: New Measurements and an Internally Consistent Model,” Contrib. Mineral. Petrol. 179, 155–165 (1997).
T. Ohtani, T. Nakano, Y. Nakashima, and H. Muraoka, “Three-Dimension Shape Analysis of Miarolitic Cavities in the Kakkonda Granite by X-Ray Computed Tomography,” J. Struct. Geol. 23, 1441–1754 (2001).
K. E. Perepelkin and V. S. Matveev, Gas Emulsion (Khimiya, Leningrad, 1979) [in Russian].
I. S. Peretyazhko, S. Z. Smirnov, V. G. Thomas, and V. Ye. Zagorsky, “Gels and Melt-Like Gels in High-Temperature Endogenous Formation,” in Proceedings of the In. IAGOD Conference, Vladivostok, Russia, 2004 (Vladivostok, 2004a), pp. 306–309.
I. S. Peretyazhko, V. Ye. Zagorsky, S. Z. Smirnov, and M. Y. Mikhailov, “Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan Field, Central Transbaikalia, Russia),” Chem. Geol. 210, 91–111 (2004b).
I. S. Peretyazhko and V. E. Zagorsky, “The Influence of H3BO3 on Fluid Pressure in Granitic Pegmatite Miaroles: A Computation of Isochores and the Density of Boric Acid Solutions,” Dokl. Akad. Nauk 383(6), 812–817 (2002) [Dokl. Earth Sci. 383, 340–345 (2002)].
I. S. Peretyazhko, “Inclusions of Magmatic Fluids: P-V-T-X Properties of Aqueous Salt Solutions of Various Types and Petrological Implications,” Petrologiya 17(2), 197–221 (2009) [Petrology 17, 187–201 (2009)].
I. S. Peretyazhko, V. Yu. Prokof’ev, V. E. Zagorsky, and S. Z. Smirnov, “Role of Boric Acids in the Formation of Pegmatite and Hydrothermal Minerals: Petrologic Consequences of Sassolite (H3BO3) Discovery in Fluid Inclusions,” Petrologiya 8(3), 241–266 (2000) [Petrology 8, 214–237 (2000)].
E. S. Persikov, Viscosity of Magmatic Melts (Nauka, Moscow, 1984) [in Russian].
A. R. Philpotts and M. Carroll, “Physical Properties of Partly Melted Tholeiitic Basalt,” Geology 24, 1029–1032 (1996).
P. M. Piccoli, P. A. Candela, P. J. Jugo, and M. R. Frank, “Contrasting Syn-Late Magmatic Intrusive Behavior of Aplite Dikes in the Tuolumne Intrusive Suite, California: Implications for Magma Rheology,” in Cordilleran Section of the Geological Society of America (a Symposium in Honor of Paul Bateman) 28, 101 (1996).
M. Pichavant, “An Experimental Study of the Effect of Boron on a Water Saturated Haplogranite at 1 Kbar Vapour Pressure,” Contrib. Mineral. Petrol. 76, 430–439 (1981).
M. Pichavant, “Effects of B and H2O on Liquidus Phase Relations in the Haplogranite System at 1 Kbar,” Am. Mineral. 72, 1056–1070 (1987).
F. G. Reif, Ore-Forming Potential of Granites and Conditions of its Realization (Nauka, Moscow, 1990) [in Russian].
P. Richet, A. Whittington, F. Holtz, H. Behrens, S. Ohlhorst, and M. Wilke, “Water and the Density of Silicate Glasses,” Contrib. Mineral. Petrol. 138, 337–347 (2000).
B. Scaillet, F. Holtz, M. Pichavant, and M. O. Schmidt, “The Viscosity of Himalayan Leucogranites: Implications for Mechanisms of Granitic Magma Ascent,” J. Geophys. Res. 101, 27691–27699 (1996).
V. N. Sharapov and A. N. Cherepanov, Dynamics of Magma Differentiation (Nauka, Novosibirsk, 1986) [in Russian].
V. N. Sharapov and Yu. A. Averkin, “Dynamics of Heat- and Mass-Exchange in the Orthomagmatic Fluid Systems,” Tr. Ins. Geol. Geofiz., No. 721, (1990) [in Russian].
H. R. Shaw, “Viscosities of Magmatic Silicate Liquids: An Empirical Method of Prediction,” Amer. J. Sci. 272, 870–893 (1972).
A. G. Simakin, P. Armienti, and M. B. Epel’baum, “Coupled Degassing and Crystallization: Experimental Study at Continuous Pressure Drop, with Application to Volcanic Bombs,” Bull. Volcanol. 61, 275–287 (1999).
A. G. Simakin, P. Armienti, and T. P. Salova, “Joint Degassing and Crystallization: Experimental Study with a Gradual Pressure Release,” Geokhimiya, No. 6, 579–591 (2000) [Geochem. Int.38, 523–534 (2000)].
M. C. Sirbescu, E. E. Hartwick, and J. J. Student, “Rapid Crystallization of the Animikie Red Ace Pegmatite, Florence County, Northeastern Wisconsin: Inclusion Microthermometry and Conductive-Cooling Modeling,” Contrib. Mineral. Petrol. 156, 289–305 (2008).
M. Štemprok, D. Dolejš, A. Müller, R. Seltmann, “Textural Evidence of Magma Decompression, Devolatilization and Disequilibrium Quenching: An Example from the Western Krušné Hory/Erzgebirge Granite Pluton,” Contrib. Mineral. Petrol. 155, 93–109 (2008).
R. Thomas and J. D. Webster, “Strong Tin Enrichment in a Pegmatite-Forming Melt,” Mineralium Deposita 35, 570–582 (2000).
J. L. R. Touret, S. Z. Smirnov, I. S. Peretyazhko, V. Ye. Zagorsky, and V. G. Thomas, “Magmatic-Hydrothermal Transition in Tourmaline-Bearing Miarolitic Pegmatites: Hydrosaline Fluids or Silica Gels?,” in International Symposium. Granitic Pegmatites: The State of the Art, Porto, Portugal, 2007 (Proto, 2007), pp. 92–93.
J. L. Vigneresse, “The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation,” Ore Geol. Rev. 30, 181–216 (2007).
J. L. Vigneresse, “Toward a New Paradigm for Granite Generation,” R. Soc. Edinburgh Trans. Earth Sci. 95, 11–22 (2004).
K. L. Webber, A. U. Falster, W. B. Simmons, and E. E. Foord, “The Role of Diffusion-Controlled Oscillatory Nucleation in the Formation of Line Rock in Pegmatite-Aplite Dikes,” J. Petrol. 38, 1777–1791 (1997).
K. L. Webber, W. B. Simmons, A. U. Falster, and E. E. Foord, “Cooling Rates and Crystallization Dynamics of Shallow Level Pegmatite-Aplite Dikes, San Diego County, California,” Am. Mineral. 84, 708–717 (1999).
S. Weizhou, L. Hongfei, Li Huimin, Li Wuxian, and W. Dezi, “The Thermal History of the Miarolitic Granite at Xincun, Fujiian Province, China,” Chin. Sci. Bull. 45, 1991–1995 (2000).
K. Wohletz, L. Civetta, G. Orsi, “Thermal Evolution of the Phlegraean Magmatic System,” J. Volcanol. Geotherm. Res. 91, 381–414 (1999).
V. Ye. Zagorsky and I. S. Peretyazhko, “The Malkhan Granite-Pegmatite System,” Dokl. Akad. Nauk 406(4), 511–515 (2006) [Dokl. Earth Sci. 206, 132–135 (2006)].
V. Ye. Zagorsky, I. S. Peretyazhko, and B. M. Shmakina, Miarolitic Pegmatites (Granite Pegmatites; Vol. 3) (Nauka, Novosibirsk, 1999) [in Russian].
V. E. Zagorsky and I. S. Peretyazhko, Pegmatites with Precious Stones of the Central Transbaikalia (Nauka, Novosibirsk, 1992) [in Russian].