Genes predisposing to syndromic and nonsyndromic infertility: a narrative review

Tajudeen Yahaya1, Usman U. Liman2, Haliru Abdullahi1, Yahuza S. Koko1, Samuel S. Ribah1, Zulkarnain Adamu1, Suleiman Abubakar1
1Department of Biolog, Federal University Birnin-Kebbi, PMB 1157, Birnin-Kebbi, Nigeria
2Department of Biochemistry and Molecular Biology, Federal University Birnin-Kebbi, Birnin-Kebbi, Nigeria

Tóm tắt

AbstractBackgroundAdvanced biological techniques have helped produce more insightful findings on the genetic etiology of infertility that may lead to better management of the condition. This review provides an update on genes predisposing to syndromic and nonsyndromic infertility.Main bodyThe review identified 65 genes linked with infertility and infertility-related disorders. These genes regulate fertility. However, mutational loss of the functions of the genes predisposes to infertility. Twenty-three (23) genes representing 35% were linked with syndromic infertility, while 42 genes (65%) cause nonsyndromic infertility. Of the 42 nonsyndromic genes, 26 predispose to spermatogenic failure and sperm morphological abnormalities, 11 cause ovarian failures, and 5 cause sex reversal and puberty delay. Overall, 31 genes (48%) predispose to male infertility, 15 genes (23%) cause female infertility, and 19 genes (29%) predispose to both. The common feature of male infertility was spermatogenic failure and sperm morphology abnormalities, while ovarian failure has been the most frequently reported among infertile females. The mechanisms leading to these pathologies are gene-specific, which, if targeted in the affected, may lead to improved treatment.ConclusionsMutational loss of the functions of some genes involved in the development and maintenance of fertility may predispose to syndromic or nonsyndromic infertility via gene-specific mechanisms. A treatment procedure that targets the affected gene(s) in individuals expressing infertility may lead to improved treatment.

Từ khóa


Tài liệu tham khảo

Venkatesh T, Suresh PS, Tsutsumi R (2014) New insights into the genetic basis of infertility. Appl Clin Genet. 7:235–243. https://doi.org/10.2147/TACG.S40809

Agarwal A, Mulgund A, Hamada,A, et al. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015; 13: 37 https://doi.org/10.1186/s12958-015-0032-1 .

Chowdhury SH, Cozma AI, Chowdhury JH. Infertility. Essentials for the Canadian Medical Licensing Exam: review and prep for MCCQE Part I. 2nd edition. Wolters Kluwer. Hong Kong. 2017.

Mascarenhas MN, Flaxman SR, Boerma T et al (2012) National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 9:e1001356 https://dx.plos.org/10.1371

Odunvbun W, Oziga D, Oyeye L, Ojeogwu C (2018) Pattern of infertility among infertile couple in a secondary health facility in Delta State, South South Nigeria. Trop J Obstet Gynaecol. 35:244–248. https://doi.org/10.4103/TJOG.TJOG_61_18

Kumar N, Singh AK (2015) Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci. 8:191–196. https://doi.org/10.4103/0974-1208.170370

The ESHRE Capri Workshop Group (2002) Physiopathological determinants of human infertility. Hum Reprod Update. 8(5):435–447

Brugo-Olmedo S, Chillik C, Kopelman S (2001) Definition and causes of infertility. Reprod BioMed Online. 2(1):41–53. https://doi.org/10.1016/s1472-6483(10)62187-6

Durairajanayagam D (2018) Lifestyle causes of male infertility. Arab J Urol. 16(1):10–20. https://doi.org/10.1016/j.aju.2017;12:004

Ferlin A, Raicu F, Gatta V et al (2007) Male infertility: role of genetic background. Reprod Biomed Online. 14:734–745. https://doi.org/10.1016/s1472-6483(10)60677-3

O'Flynn O'Brien KL, Varghese AC, Agarwal A (2010) The genetic causes of male factor infertility: a review. Fertil. Steril. 93:1–12. https://doi.org/10.1016/j.fertnstert.2009.10.045

Genetic Home Reference. 2020. CFTR gene. Available at https://ghr.nlm.nih.gov/gene/CFTR . .

Tahmasbpour E, Balasubramanian D, Agarwal A (2014) A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART) J. Assist Reprod Genet. 31:1115–1137. https://doi.org/10.1007/s10815-014-0280-6

Dada R, Thilagavathi J, Venkatesh S, Esteves SC, Agarwal A (2011) Genetic testing in male infertility. Open Reprod Sci. 3:42–56. https://doi.org/10.2174/1874255601103010042

Ajonuma LC, Ng EH, Chow PH et al (2005) Increased cystic fibrosis transmembrane conductance regulator (CFTR) expression in the human hydrosalpinx. Hum Reprod. 20(5):1228–1234. https://doi.org/10.1093/humrep/deh773

Genetic Home Reference. 2020. NR5A1 gene. Available at .

Jedidi I, Ouchari M, Yin Q (2018) Autosomal single-gene disorders involved in human infertility. Saudi J Biol Sci. 25(5):881–887. https://doi.org/10.1016/j.sjbs.2017.12.005

Bashamboo A, Ferraz-de-Souza B, Lourenço D et al (2010) Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am J Hum Genet. 87:505–512. https://doi.org/10.1016/j.ajhg.2010.09.009

Fabbri HC, de Andrade JGR, Soardi FC, et al. The novel p.Cys65Tyr mutation in NR5A1 gene in three 46, XY siblings with normal testosterone levels and their mother with primary ovarian insufficiency. BMC Med Genet. 2014; 15:7. DOI: 10.1186/1471-2350-15-7.

Genetic Home Reference. 2020. WT1 gene. Available at https://ghr.nlm.nih.gov/gene/WT1 . .

Nathan A, Reinhardt P, Kruspe D et al (2017) The Wilms tumor protein Wt1 contributes to female fertility by regulating oviductal proteostasis. Hum Mol Genet. 26:1694–1705. https://doi.org/10.1093/hmg/ddx075

Wang XN, Li ZS, Ren Y et al (2013) The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of Sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genet. 9:e1003645. https://doi.org/10.1371/journal.pgen.1003645

Sakamoto J, Takata A, Fukuzawa R et al (2001) A novel WT1 gene mutation associated with Wilms’ Tumor and congenital male genitourinary malformation. Pediatr Res. 50:337–344. https://doi.org/10.1203/00006450-200109000-00008

Seabra CM, Quental S, Lima AC et al (2015) The mutational spectrum of WT1 in male infertility. J Urol. 193:1709–1715. https://doi.org/10.1016/j.juro.2014.11.004

Wang Y, Xiao M, Chem X et al (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Is. Mol Cell. 57(4):662–673. https://doi.org/10.1016/j.molcel.2014.12.023

Genetic Home Reference. 2020. FMR1 gene. Available at https://ghr.nlm.nih.gov/gene/FMR1 . .

Coffee B, Keith K, Albizua I et al (2009) Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am J Hum Genet. 85(4):503–514. https://doi.org/10.1016/j.ajhg.2009.09.007

Genetic Home Reference. 2020. GALT gene. Available at https://ghr.nlm.nih.gov/gene/GALT#conditions . .

Fridovich-Keil JL, Gubbels CS, Spencer JB (2011) Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis. 34(2):357–366. https://doi.org/10.1007/s10545-010-9221-4

Zorrilla M, Yatsenko AN (2013) The genetics of infertility: current status of the field. CurrGenet Med Rep. 1(4):10. https://doi.org/10.1007/s40142-013-0027-1

National Center for Biotechnology Information. 2020. GDF9 growth differentiation factor 9 [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/2661 . .

Zhao H, Qin Y, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A (2007) Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 88(5):1474–1476. https://doi.org/10.1016/j.fertnstert.2007.01.021

Uniport .2020. UniProtKB - O60383 (GDF9_HUMAN). Available at https://www.uniprot.org/uniprot/O60383 . Accessed March 18, 2020.

Genetic Home Reference. 2020.. MED12 gene. Available at https://ghr.nlm.nih.gov/gene/MED12#conditions . .

Genetic Home Reference. 2020. ANOS1 gene. Available at https://ghr.nlm.nih.gov/gene/ANOS1#location . .

Lopategui DM, Griswold AJ, Arora H, Clavijo RI, Tekin M, Ramasamy R (2018) A rare ANOS1 variant in siblings with Kallmann syndrome identified by whole exome sequencing. Androl. 6(1):53–57. https://doi.org/10.1111/andr.12432

Genetic Home Reference. 2020. LEP gene. Available at https://ghr.nlm.nih.gov/gene/LEP#location . .

Layman LC (2002) Human gene mutations causing infertility. J Med Genet. 39:153–161. https://doi.org/10.1136/jmg.39.3.153

Hodžić AM, Ristanović B, Zorn C et al (2017) Genetic variation in leptin and leptin receptor genes as a risk factor for idiopathic male infertility. Androl. 5(1):70–74. https://doi.org/10.1111/andr.12295

Genetic Home Reference. 2020. LEPR gene. Available at https://ghr.nlm.nih.gov/gene/LEPR#location . .

Genetic Home Reference. 2020. NR0B1 gene. Available at https://ghr.nlm.nih.gov/gene/NR0B1#location . .

Genetic Home Reference. 2020. HESX1 gene. Available at https://ghr.nlm.nih.gov/gene/HESX1#location . .

National Center for Biotechnology Information. 2020. LHB gene. Available at https://ghr.nlm.nih.gov/gene/LHB#location . .

El-Shal SA, Zidan HE, Rashad MN, Abdelaziz AM, Harira MM (2016) Association between genes encoding components of the leutinizing hormone/luteinizing hormone choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. Inter Union of Biochem Mol Biol. 68(1):23–36. https://doi.org/10.1002/iub.1457

Reen JK, Kerekoppa R, Deginal R et al (2018) Luteinizing hormone beta gene polymorphism and its effect on semen quality traits and luteinizing hormone concentrations in Murrah buffalo bulls. Asian-Australas J Anim Sci. 31(8):1119–1126. https://doi.org/10.5713/ajas.17.0679

Genetic Home Reference. 2020. LHCGR gene. Available at https://ghr.nlm.nih.gov/gene/LHCGR . .

Genetic Home Reference. 2020. AR gene. Available at https://ghr.nlm.nih.gov/gene/AR#location . .

Genetic Home Reference. 2020. SRY gene. Available at https://ghr.nlm.nih.gov/gene/SRY#synonyms . .

Lerchbaum B, Obermayer-Pietsch B (2012) Vitamin D and fertility: a systematic review. Eur JEndocrinol. 166:765–778. https://doi.org/10.1530/EJE-11-0984

Genetic Home Reference. 2020. VDR gene. Available at https://ghr.nlm.nih.gov/gene/VDR#location . .

Reginatto MW, Pizarro BM, Antunes RA, Mancebo ACA, Hoffmann L, Fernandes P. Vitamin D receptor TaqI polymorphism is associated with reduced follicle number in women utilizing assisted reproductive technologies. Front Endocrinol. 2018; 9: 252.| https://doi.org/10.3389/fendo.2018.00252 .

Bagheri M, Abdi RI, Hosseini JN, Nanbakhsh F (2013) Vitamin D receptor TaqI gene variant in exon 9 and polycystic ovary syndrome risk. Int J Fertil Steril. 7(2):116–121

Szczepańsk M, Mostowska A, Wirstlein P, Skrzypczak J. Matthew MM, Jagodziński PP. Polymorphic variants in vitamin D signaling pathway genes and the risk of endometriosis-associated infertility. Mol Med Rep. 2015; 12 (5): 7109-7115. https://doi.org/10.3892/mmr.2015.4309 .

Sunnotel O, Hiripi L, Lagan K et al (2010) Alterations in the steroid hormone receptor co-chaperone FKBPL are associated with male infertility: a case-control study. Reprod Biol Endocrinol. 8:22. https://doi.org/10.1186/1477-7827-8-22

Ketefian A, Jones MR, Krauss RM. Association study of androgen signaling pathway genes in polycystic ovary syndrome. Fertil Steril. 2016; 105(2):467-73.e4. DOI: 10.1016/j.fertnstert.2015;09: 043.

Demetriou C, Chanudet E, Joseph A et al (2019) Exome sequencing identifies variants in FKBP4 that are associated with recurrent fetal loss in humans. Hum Mol Genet. 28(20):3466–3474. https://doi.org/10.1093/hmg/ddz203

Ditton HJ, Zimmer J, Kamp C, Rajpert-De ME, Vogt PH (2004) The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet. 13(19):2333–2341. https://doi.org/10.1093/hmg/ddh240

Luddi A, Margollicci M, Gambera L et al (2009) Spermatogenesis in a man with complete deletion of USP9Y.N. Engl J Med. 360(9):881–885. https://doi.org/10.1056/NEJMoa0806218

Uniport. 2020. UniProtKB - O00507 (USP9Y_HUMAN). Available at https://www.uniprot.org/uniprot/O00507 .

Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol. 7:1140–1146. https://doi.org/10.1038/ncb1320

GeneCards. 2020. PLK4 Gene. Available at https://www.genecards.org/cgi-bin/carddisp.pl?gene=PLK4 . .

Harris RM, Weiss J, Jameson JL (2011) Male hypogonadism and germ cell loss caused by a mutation in Polo-like kinase 4. Endocrinol. 152:3975–3985. https://doi.org/10.1210/en.2011-1106

Miyamoto T, Minase G, Shin T, Ueda H, Okada H, Sengoku K (2017) Human male infertility and its genetic causes. Reprod Med Biol. 16(2):81–88. https://doi.org/10.1002/rmb2.12017

Veleri S, Bishop K, Dalle Nogare DE et al (2012) Knockdown of Bardet-Biedl syndrome gene BBS9/PTHB1 leads to cilia defects. PLoS ONE. 7(3):e34389. https://doi.org/10.1371/journal.pone.0034389

HyunJun K, Seung KL, Min-Ho K et al (2008) Parathyroid hormone-responsive B1 gene is associated with premature ovarian failure. Hum Reprod. 23(6):1457–1465. https://doi.org/10.1093/humrep/den086

Genetic Home Reference. 2020. FSHR gene. Available at https://ghr.nlm.nih.gov/gene/FSHR#location . .

Aittomäki K, Lucena JD, Pakarinen P et al (1995) Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 82(6):959–968 https://doi.org/10.1016/0092-8674(95)90275-9

Uniport. 2020. UniProtKB - P23945 (FSHR_HUMAN). Available at https://www.uniprot.org/uniprot/P23945 . .

Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Namiki SK. Male infertility and its causes in human. Adv Urol. 2012; Article ID 384520. DOI: 10.1155/2012/384520.

Uniport. 2020. UniProtKB - Q9BXB7 (SPT16_HUMAN). Available at https://www.uniprot.org/uniprot/Q9BXB7 . Accessed 23 march, 2020.

Dam AH, Koscinski I, Kremer JA et al (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 81(4):813–820. https://doi.org/10.1086/521314

Genetic Home Reference. 2020. AURKC gene. Available at https://ghr.nlm.nih.gov/gene/AURKC . .

Genetic Home Reference. 2020. CATSPER1 gene. Available at https://ghr.nlm.nih.gov/gene/CATSPER1#location . .

Avenarius MR, Hildebrand MS, Zhang Y et al (2009) Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Gen. 84(4):505–510 https://doi.org/10.1016/j.ajhg.2009.03.004

Nuti F, Krausz C (2008) Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online. 16:504–513. https://doi.org/10.1016/s1472-6483(10)60457-9

Genetic Home Reference. 2020. MTHFR gene. Available at https://ghr.nlm.nih.gov/gene/MTHFR#normalfunction . Accessed March, 2020.

Friedman G, Goldschmidt N, Friedlander Y et al (1999) A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr. 129:1656–1661. https://doi.org/10.1093/jn/129.9.1656

Marques CJ, Costa P, Vaz B et al (2008) Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 14:67–74. https://doi.org/10.1093/molehr/gam093

National Center for Biotechnology Information. 2020. SYCP3 synaptonemal complex protein 3 [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/50511 . .

Uniport. 2020. UniProtKB - Q8IZU3 (SYCP3_HUMAN). Available at https://www.uniprot.org/uniprot/Q8IZU3 . .

GeneCards. 2020. HSF2 Gene. Available at https://www.genecards.org/cgi-bin/carddisp.pl?gene=HSF2 . .

Mou L, Wang Y, Li H et al (2013) A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet. 132(2):159–165

Wang G, Ying Z, Jin X et al (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis. 38(2):66–80. https://doi.org/10.1002/gene.20005

GeneCards. 2020. SYCP2 Gene. Available at https://www.genecards.org/cgi-bin/carddisp.pl?gene=SYCP2 . .

Schilit SLP, Menon S, Friedrich C et al (2020) SYCP2 translocation-mediated dysregulation and frameshift variants cause human male infertility. Am J Hum Genet. 6(1):41–57. https://doi.org/10.1016/j.ajhg.2019.11.013

Takemoto K, Imai Y, Saito K et al (2020) Sycp2 is essential for synaptonemal complex assembly, early meiotic recombination and homologous pairing in zebrafish spermatocytes. PLoS Genet. 16(2):e1008640. https://doi.org/10.1371/journal.pgen.1008640

Bolcun-Filas E, Bannister LA, Barash A et al (2011) A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Develop. 138:3319–3330. https://doi.org/10.1242/dev.067645

Yang F, Silber S, Leu NA. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015; 7(9):1198–1210. doi:10.15252/emmm.201404967.

Uniport. 2020. UniProtKB - Q8IYF3 (TEX11_HUMAN). Available at https://www.uniprot.org/uniprot/Q8IYF3 . .

Genetic Home Reference. 2020. KIT gene. Available at https://ghr.nlm.nih.gov/gene/KIT#conditions . .

Lars R, Johan L (2016) KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog). Atlas Genet Cytogenet Oncol Haematol. 20(8):441–444 http://atlasgeneticsoncology.org/Genes/KITID127.html

Uniport. 2020. UniProtKB - Q8IZP9 (AGRG2_HUMAN). Available at https://www.uniprot.org/uniprot/Q8IZP9 . .

Patat O, Pagin A, Siegfried A et al (2016) Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am J Hum Genet. 99(2):437–442. https://doi.org/10.1016/j.ajhg.2016.06.012

National Center for Biotechnology Information. 2020. FKBP6 FKBP prolyl isomerase 6 [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/8468 . .

Crackower MA, Kolas NK, Noguchi J (2003) Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science. 300(5623):1291–1295. https://doi.org/10.1126/science.1083022

Uniport. 2020. UniProtKB - O75344 (FKBP6_HUMAN). Available at https://www.uniprot.org/uniprot/O75344 . .

Akmal M, Aulanni’am A, Widodo MA, Sumitro SB, Purnomo BB (2016) The important role of protamine in spermatogenesis and quality of sperm: a mini review. Asian Pac J Reprod. 5:357–360. https://doi.org/10.1016/j.apjr.2016.07.013

Ravel C, Chantot-Bastaraud S, El Houate B et al (2007) Mutations in the protamine 1 gene associated with male infertility. Mol Hum Reprod. 13(7):461–464. https://doi.org/10.1093/molehr/gam031

Jiang W, Sun H, Zhang J (2005) Polymorphisms in protamine 1 and protamine 2 predict the risk of male infertility: a meta-analysis. Sci Rep. 5:15300. https://doi.org/10.1038/srep15300

Siasi E, Aleyasin A, Mowla J, Sahebkasha H (2012) Association study of six SNPs in PRM1, PRM2 and TNP2 genes in iranian infertile men with idiopathic azoospermia. Iran J Reprod Med. 10:329–336

Miyagawa Y, Nishimura H, Tsujimura A et al (2005) Single-nucleotide polymorphisms and mutation analyses of the TNP1 and TNP2 genes of fertile and infertile human male. J Androl. 26(6):779–786. https://doi.org/10.2164/jandrol.05069

Heidari MM, Khatami M, Talebi AR, Moezzi F. Mutation analysis of TNP1 gene in infertile men with varicocele. Iran J Reprod Med. 2014; 12(4):257-62. .

Adham IM, Nayernia K, Burkhardt-Göttges E et al (2001) Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol Hum Reprod. 7(6):513–520. https://doi.org/10.1093/molehr/7.6.513

Uniport. 2020. UniProtKB - Q9NQZ3 (DAZ1_HUMAN). Available at https://www.uniprot.org/uniprot/Q9NQZ3 . .

Fernandes K, Huellen J, Goncalves H et al (2002) High frequency of DAZ1/DAZ2 gene deletions in patients with severeoligozoospermia. Mol Hum Reprod. 8(3):286–298. https://doi.org/10.1093/molehr/8.3.286

Genetic Home Reference. 2020. DAZI gene. Available at https://ghr.nlm.nih.gov/gene/DAZ1 . .

Deans B, Griffin CS, Maconochie M, Thacker J (2000) Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J. 19(24):6675–6685. https://doi.org/10.1093/emboj/19.24.6675

Yang Y, Guo J, Dai L (2018) XRCC2 mutation causes meiotic arrest, azoospermia and infertility. J Med Genet. 55:628–636. https://doi.org/10.1136/jmedgenet-2017-105145

GeneCards. 2020. CCDC62 Gene. Available at https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCDC62 . .

Li Y, Li C, Lin S et al (2017) A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol Reprod. 96(3):587–597 https://doi.org/10.1095/biolreprod.116.141408

Hwang JY, Mannowetz N, Zhang Y. EFCAB9 is a pH-Dependent Ca2+ sensor that regulates CatSper channel activity and sperm motility. BioRxiv. 2018; Article no 459487. doi: https://doi.org/10.1101/459487 .

Yatsenko AN, Roy A, Chen R (2006) Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 15:3411–3419. https://doi.org/10.1093/hmg/ddl417

Kuo YC, Lin YH, Chen HI et al (2012) SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 33:710–719. https://doi.org/10.1002/humu.22028

Uniport. 2020. UniProtKB - Q92750 (TAF4B_HUMAN). Available at https://www.uniprot.org/uniprot/Q92750 . .

Ayhan Ö, Balkan M, Guven A et al (2014) Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet. 51:239–244. https://doi.org/10.1136/jmedgenet-2013-102102

Yan W, Si Y, Slaymaker S et al (2010) Zmynd15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility. J Biol Chem. 285:31418–31426. https://doi.org/10.1074/jbc.M110.116418

Uniport. 2020. UniProtKB - Q9H091 (ZMY15_HUMAN). Available at https://www.uniprot.org/uniprot/Q9H091 . .

National Center for Biotechnology Information. 2020. NANOS1 nanos C2HC-type zinc finger 1 [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/340719 . .

Kusz-Zamelczyk K, Sajek M, Spik A (2013) Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J Med Genet. 50:187–193. https://doi.org/10.1136/jmedgenet-2012-101230

Uniport. 2020. UniProtKB - Q8WY41 (NANO1_HUMAN). Available at https://www.uniprot.org/uniprot/Q8WY41 . .

Uniport. 2020. UniProtKB - Q7Z4T8 (GLTL5_HUMAN). Available at https://www.uniprot.org/uniprot/Q7Z4T8 . .

Takasaki N, Tachibana K, Ogasawara S (2014) A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci USA. 111:1120–1125. https://doi.org/10.1073/pnas.1310777111

National Center for Biotechnology Information. 2020. GNRHR gonadotropin releasing hormone receptor [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/2798 . .

Zernov N, Skoblov M, Baranova A, Boyarsky K (2016) Mutations in gonadotropin-releasing hormone signaling pathway in two nIHH patients with successful pregnancy outcomes. Reprod Biol Endocrinol. 14:48. https://doi.org/10.1186/s12958-016-0183-8

Uniport. 2020. UniProtKB - P30968 (GNRHR_HUMAN). Available at https://www.uniprot.org/uniprot/P30968 . .

Genetic Home Reference. 2020. PROP1 gene. Available at https://ghr.nlm.nih.gov/gene/PROP1#location . .

Uniport (2020) UniProtKB - Q9Y5R6 (DMRT1_HUMAN). Available at https://www.uniprot.org/uniprot/Q9Y5R6 .Accessed (March 25, 2020)

Uniport. 2020. UniProtKB - P41225 (SOX3_HUMAN). Available at https://www.uniprot.org/uniprot/P41225 . .

Uniport. 2020. UniProtKB - Q2MKA7 (RSPO1_HUMAN). Available at https://www.uniprot.org/uniprot/Q2MKA7 . .

Tomaselli S, Megiorni F, De Bernardo C et al (2007) Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Human Mutat. 29(2):220–226. https://doi.org/10.1002/humu.20665

National Center for Biotechnology Information. 2020. BMP15 bone morphogenetic protein 15 [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/9210 . .

Uniport. 2020. UniProtKB - O95972 (BMP15_HUMAN). Available at https://www.uniprot.org/uniprot/O95972 . .

National Center for Biotechnology Information. 2020. FIGLA folliculogenesis specific bHLH transcription factor [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/344018 . .

Zhao H, Chen ZJ, Qin Y et al (2008) Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 82(6):1342–1348. https://doi.org/10.1016/j.ajhg.2008.04.018

Soyal SM, Amleh A, Dean J (2000) FIGalpha. A germ cell-specific transcription factor required for ovarian follicle formation. Develop. 127(21):4645–4654

Uniport. 2020. UniProtKB - Q6QHK4 (FIGLA_HUMAN). Available at https://www.uniprot.org/uniprot/Q6QHK4 . .

Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 305(5687):1157–1159. https://doi.org/10.1126/science.1099755

Bouilly J, Bachelot A, Broutin I, Touraine P, Binart N (2011) Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort. Hum Mutat. 32(10):1108–1113. https://doi.org/10.1002/humu.21543

Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A (2007) NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 81(3):576–581. https://doi.org/10.1086/519496

Tahara N, Kawakami H, Zhang T et al (2018) Temporal changes of Sall4 lineage contribution in developing embryos and the contribution of Sall4-lineages to postnatal germ cells in mice. Sci Rep. 8:16410 https://doi.org/10.1038/s41598-018-34745-5

Wang B, Li L, Ni F (2009) Mutational analysis of SAL-Like 4 (SALL4) in Han Chinese women with premature ovarian failure. Mol Hum Reprod. 15(9):557–562. https://doi.org/10.1093/molehr/gap046

GeneCards. 2020. FSHB Gene. Available at https://www.genecards.org/cgi-bin/carddisp.pl?gene=FSHB#summaries . .

Layman LC, Lee EJ, Peak DB (1997) Delayed puberty and hypogonadism caused by a mutation in the follicle stimulating hormone β-subunit gene. N Engl J Med. 337:607–611

Rull1 K, Laan M. Expression of β-subunit of human chorionic gonadotropin genes during the normal and failed pregnancy. Hum Reprod. 2005; 20(12): 3360–3368. doi: https://doi.org/10.1093/humrep/dei261 .

Nagirnaja L, Venclovas C, Rull K et al (2012) Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit. Mol Hum Reprod. 18(8):379–390. https://doi.org/10.1093/molehr/gas018

Poikkeus P, Hiilesmaa V, Tiitinen A (2002) Serum HCG 12 days after embryo transfer in predicting pregnancy outcome. Hum Reprod. 17:1901–1905. https://doi.org/10.1093/humrep/17.7.1901

ational Center for Biotechnology Information. 2020. SOHLH1 spermatogenesis and oogenesis specific basic helix-loop-helix 1 [Homo sapiens (human)]. Available at https://www.ncbi.nlm.nih.gov/gene/402381 . .

Uniport. 2020. UniProtKB - Q5JUK2 (SOLH1_HUMAN). Available at https://www.uniprot.org/uniprot/Q5JUK2 . .

Toyoda S, Yoshimura T, Mizuta J, J-i M (2014) Auto-regulation of the Sohlh1 gene by the SOHLH2/SOHLH1/SP1 complex: implications for early spermatogenesis and oogenesis. PLoS ONE. 9(7):e101681. https://doi.org/10.1371/journal.pone.0101681

Shin YH, Ren Y, Suzuki H et al (2017) Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I. J Clin Invest. 127(6):2106–2211. https://doi.org/10.1172/JCI90281

Qin Y, Jiao X, Dalgleish R et al (2014) Novel variants in the SOHLH2 gene are implicated in human premature ovarian failure. Fertil Steril. 101(4):1104–1109. https://doi.org/10.1016/j.fertnstert.2014.01.001

Song B, Zhang Y, He XJ et al (2015) Association of genetic variants in SOHLH1 and SOHLH2 with non-obstructive azoospermia risk in the Chinese population. Eur J Obstet Gynecol Reprod Biol. 184:48–52. https://doi.org/10.1016/j.ejogrb.2014.11.003

Hao J, Yamamoto M, Richardson TE et al (2008) Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells 26(6):1587–1597

Wu X, Thomas P, Yong ZY (2018) Pgrmc1 Knockout impairs oocyte maturation in zebrafish. Front.Endocrinol. 9:560. https://doi.org/10.3389/fendo.2018.00560

Paskulin DD, Cunha-Filho JS, Paskulin LD, Souza CAB, Ashton-Prolla P (2013) ESR1 rs9340799 is associated with endometriosis-related infertility and in vitro fertilization failure. Disease Markers. 35(6):907–913. https://doi.org/10.1155/2013/796290

Manosalva I, González A, Kageyama R (2013) Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation. Develop Biol. 375(2):140–151. https://doi.org/10.1016/j.ydbio.2012.12.015

Cariati F, D’Argenio V, Tomaiuolo R (2019) The evolving role of genetic tests in reproductive medicine. J Transl Med. 17:267. https://doi.org/10.1186/s12967-019-2019-8

Devine K, Roth L. 2020. Genetic testing of embryos. Shady grove fertility. Available at https://www.shadygrovefertility.com/treatments-success/advanced-treatments/genetic-testing-embryos .

Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT (2013) Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 99:1377–1384. https://doi.org/10.1016/j.fertnstert.2012.12.018