Generation of reactive oxygen species during pollen grain germination

Russian Journal of Developmental Biology - Tập 40 Số 6 - Trang 345-353 - 2009
A. V. Smirnova1, N. P. Matveyeva1, O. G. Polesskaya1, I. P. Yermakov1
1Moscow State University, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beauchamp, C. and Fridovich, I., Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

Boldogh, I., Bacsi, A., Choudhury, B.K., et al., ROS Generated by Pollen NADPH Oxidase Provide a Signal Augments Antigen-Induced Allergic Airway Inflammation, J. Clin. Invest., 2005, vol. 115, pp. 2169–2179.

Bunker, C.E., Rollins, H.W., Ma, B., et al., Fluorescence Spectroscopic Probing of Two Distinctive Microenvironments in Perfluorinated Ionomer Membranes, J. Photochem. Photobiol. A, 1999, vol. 126, pp. 71–76.

Cardenas, L., McKenna, S.T., Kunkel, J.G., et al., NAD(P)H Oscillates in Pollen Tubes and is Correlated with Tip Growth, Plant Physiol., 2006, vol. 142, pp. 1460–1468.

Carol, R.J. and Dolan, L., The Role of Reactive Oxygen Species in Cell Growth: Lessons from Root Hairs, J. Exp. Bot., 2006, vol. 57, pp. 1829–1834.

Cathcart, R., Schwiers, E., and Ames, B.N., Detection of Picomole Levels of Hydroperoxides using a Fluorescent Dichlorofluorescein Assay, Anal. Biochem., 1983, vol. 134, pp. 111–116.

Coelho, S.M., Brownlee, C., and Bothwell, J., A Tip-High, Ca2+-Interdependent, Reactive Oxygen Species Gradient is Associated with Polarized Growth in Fucus serratus Zygotes, Planta, 2008, vol. 227, pp. 1037–1046.

Coelho, S.M., Taylor, A.R., Ryan, K.P., et al., Spatiotemporal Pattering of Reactive Oxygen Production and Ca2+ Wave Propagation in Fucus Rhizoid Cells, Plant Cell, 2002, vol. 14, pp. 2369–2381.

Cordoba-Pedregosa, M.C., Villalba, J.M., Cordoba, F., et al., Changes in Intracellular and Apoplastic Peroxidase Activity, Ascorbate Redox Status, and Root Elongation Induced by Enhanced Ascorbate Content in Allium cepa L., J. Exp. Bot., 2005, vol. 412, pp. 685–694.

Cresti, M., Ciampolini, F., Mulcahy, D.L.M., et al., Ultrastructure of Nicotiana allata Pollen, Its Germination and Early Tube Formation, Am. J. Bot., 1985, vol. 72, pp. 719–727.

Dunand, C., Crevecoeur, M., and Penel, C., Distribution of Superoxide and Hydrogen Peroxide in Arabidopsis Root and Their Influence on Root Development: Possible Interaction with Peroxidases, New Phytol., 2007, vol. 174, pp. 332–341.

Dutta, R. and Robinson, K.R., Identification and Characterization of Stretch-Activated Ion Channels in Pollen Protoplasts, Plant Physiol., 2004, vol. 135, pp. 1398–1406.

Foreman, J., Demidchik, V., Bothwell, J.H., et al., Reactive Oxygen Species Produced by NADPH Oxidase Regulate Plant Cell Growth, Nature, 2003, vol. 422, pp. 442–446.

Fry, S.C., Oxidative Scission of Plant Cell Wall Polysaccharides by Ascorbate-Induced Hydroxyl Radicals, Biochem. J., 1998, vol. 332, pp. 507–515.

Gapper, C. and Dolan, L., Control of Plant Development by Reactive Oxygen Species, Plant Physiol., 2006, vol. 141, pp. 341–345.

Halliwell, B. and Whiteman, M., Measuring Reactive Species and Oxidative Damage in vivo and in Cell Culture: How should you do it and what do the Results Mean?, Br. J. Pharmacol., 2004, vol. 142, pp. 231–255.

Halliwell, B., Reactive Species and Antioxidants. Redox Biology is a Fundamental Theme of Aerobic Life, J. High Resolut. Chromatogr. Chromatogr. Commun., 2006, vol. 141, pp. 312–322.

He, J.M., Bai, X.-L., Wang, R.-B., et al., The Involvement of Nitric Oxide in Ultraviolet-B-Inhibited Pollen Germination and Tube Growth of Paulownia tomentosa in Vitro, Physiol. Plant., 2007, vol. 131, pp. 273–282.

He, J.M., Liu, Z.-H., Xu, H., et al., The Involvement of Hydrogen Peroxide in UV-B-Inhibited Pollen Germination and Tube Growth of Paeonia suffruticosa and Paulownia tomentosa in vitro, Plant Growth. Regul., 2006, vol. 49, pp. 199–208.

Hegde, R.R., Differential Distribution of Ascorbic Acid and RNA in the Developing Anthers of Datura stramonium L., Bot. Mag. Tokyo, 1985, vol. 98, pp. 219–223.

Heslop-Harrison, J., Pollen Germination and Pollen-Tube Growth, Int. Rev. Cytol., 1987, vol. 107, pp. 1–78.

Horemans, N., Foyer, C.H., and Asard, H., Transport and Action of Ascorbate at the Plant Plasma Membrane, Trends Plant Sci., 2000, vol. 5, pp. 263–267.

Ivanov, V.B., Oxidative Stress as a Mechanism of Formation and Maintenance of Stem Cells in the Root, Biokhimiya, 2007, vol. 72, pp. 1365–1370.

Lindsay, S.E. and Fry, S.C., Redox and Wall-Restructuring, in The Expanding Cell. Plant Cell Monographs, vol. 6, Berlin: Springer, 2007, pp. 159–190.

Liszkay, A., van der Zalm, E., and Schopfer, P., Production of Reactive Oxygen Intermediates (O·−, H2O2, and ·OH) by Maize Roots and Their Role in Wall Loosening and Elongation Growth, Plant Physiol., 2004, vol. 136, pp. 3114–3123.

Macpherson, N., Takeda, S., Shang, Z., et al., NADPH Oxidase Involvement in Cellular Integrity, Planta, 2008, vol. 227, pp. 1415–1418.

McInnis, S.M., Desikan, R., Hancock, J.T., et al., Production of Reactive Oxygen Species and Reactive Nitrogen Species by Angiosperm Stigmas and Pollen: Potential Signalling Crosstalk?, New Phytol., 2006, vol. 172, pp. 221–228.

Meychik, N.R., Matveeva, N.P., Nikolaeva, Yu.I., et al., Features of Ionogenic Group Composition of Polymeric Matrix of Lily Pollen Wall, Biokhimiya, 2006, vol. 71, pp. 1103–1111.

Meychik, N.R., Smirnova, A.V., Matveeva, N.P., et al., Changes in Ionogenic Group Composition of Lily Pollen Wall during Germination Activation, Fiziol. Rast., 2009, vol. 56, pp. 232–240.

Mittler, R., Vanderauwera, S., Gollery, M., et al., Reactive Oxygen Gene Network of Plants, Trends Plant Sci., 2004, vol. 10, pp. 490–498.

Monshausen, G.B., Bibikova, T.N., Messerli, M.A., et al., Oscillations in Extracellular pH and Reactive Oxygen Species Modulate Tip Growth of Arabidopsis Root Hairs, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 20996–21001.

Nitsch, J.P., Deux Especes Photoperiodiques de Jours Courts: Plumbago indica L. et P. zeylanica L., Bull. Soc. Bot. Fr., 1965, vol. 9, pp. 517–522.

Olmsted, J. and Kearns, D.R., Mechanism of Ethidium Bromide Fluorescence Enhancement on Binding to Nucleic Acids, Biochemistry, 1977, vol. 16, pp. 3647–3554.

Parre, E. and Geitmann, A., Pectin and the Role of the Physical Properties of the Cell Wall in Pollen Tube Growth of Solanum chacoense, Planta, 2005, vol. 220, pp. 582–592.

Pedreira, J., Sanz, N., Pena, M.J., et al., Role of Apoplastic Ascorbate and Hydrogen Peroxide in the Control of Cell Growth in Pine Hypocotyls, Plant Cell Physiol., 2004, vol. 45, pp. 530–534.

Polesskaya, O.G., Rastitel’naya kletka i aktivnye formy kisloroda (Plant Cell and Reactive Oxygen Species), Moscow: Mosk. Gos. Univ., 2007.

Potocky, M., Jones, M.A., Bezvoda, R., et al., Reactive Oxygen Species Produced by NADPH Oxidase are Involved in Pollen Tube Growth, New Phytol., 2007, vol. 174, pp. 742–751.

Robinson, K.M., Janes, M.S., Pehar, M., et al., Selective Fluorescent Imaging of Superoxide in vivo Using Ethidium-Based Probes, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 15038–15043.

Rodriguez, A.A., Grunberg, K.A., and Taleisnik, E.L., Reactive Oxygen Species in the Elongation Zone of Maize Leaves are Necessary for Leaf Extension, Plant Physiol., 2002, vol. 129, pp. 1627–1632.

Sagi, M. and Fluhr, R., Production of Reactive Oxygen Species by Plant NADPH Oxidases, J. High Resolut. Chromatogr. Chromatogr. Commun., 2006, vol. 141, pp. 336–340.

Sanchez-Fernandez, R., Fricker, M., Corbern, L.B., et al., Cell Proliferation and Hair Tip Growth in the Arabidopsis Root are under Mechanistically Different Forms of Redox Control, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 2745–2750.

Smirnoff, N., Ascorbic Acid: Metabolism and Functions of a Multi-Facetted Molecule, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 229–235.