Generation of deformation-induced martensite when cryogenic turning various batches of the metastable austenitic steel AISI 347
Tóm tắt
Cryogenic turning of metastable austenitic steels allows for a surface layer hardening integrated into the machining process, which renders a separate hardening process obsolete. This surface layer hardening is the result of a superposition of strain hardening mechanisms and deformation-induced phase transformation from austenite to martensite. The activation energy required for the latter depends on the chemical composition of the metastable austenitic steel. It can hence be expected that the austenitic stability of the workpiece material varies depending on the batch and that differences in the metallurgical surface layer properties and thus also in the microhardness result after cryogenic turning. Therefore, in this paper, various batches of the metastable austenitic steel AISI 347 were turned utilizing cryogenic cooling with the same machining parameters. The thermomechanical load during the experiments was characterized and the resulting subsurface properties were investigated. The content of deformation-induced α′-martensite was quantified via magnetic sensor measurements and the distribution was examined using optical micrographs of etched cross-sections. It was found that similar amounts of deformation-induced α′-martensite were generated in the workpiece surface layer for all batches examined. Furthermore, the workpieces were analyzed with regard to the maximal hardness increase and the hardness penetration depth based on microhardness measurements. A significant surface layer hardening was achieved for all batches. This shows that surface layer hardening integrated in the manufacturing process is possible regardless of batch-dependent differences in the chemical composition and thus varying austenite stability of the metastable austenitic steel.
Tài liệu tham khảo
Jawahir IS, Brinksmeier E, M'Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60:603–626
Jung S (2012) Beitrag zum Einfluss der Oberflächencharakteristik von Gegenlaufflächen auf das tribologische System Radial-Wellendichtung. Dissertation. University of Stuttgart
Bagherifard S, Slawik S, Fernández-Pariente I, Pauly C, Mücklich F, Guagliano M (2016) Nanoscale surface modification of AISI 316L stainless steel by severe shot peening. Mater Des 102:68–77
Boardman B (1990) Fatigue resistance of steels. ASM handbook: properties and selection: irons, steels and high-performance alloys. ASM International, Materials Park, pp 673–688
Mughrabi H, Donth B, Vetter G (1997) Low-temperature autofrettage: an improved technique to enhance the fatigue resistance of thick-walled tubes against pulsating internal pressure. Fatigue Fract Eng Mater Struct 20(4):595–604
Nikitin I, Scholtes B (2012) Deep rolling of austenitic steel AISI 304 at different temperatures. J Heat Treat Mater 3:188–194
Meyer D (2012) Cryogenic deep rolling—an energy based approach for enhanced cold surface hardening. CIRP Ann Manuf Technol 61(1):543–546
Garbrecht M (2006) Mechanisches Randschichthärten. Dissertation. Universität Bremen
Ambrosy F, Zanger F, Schulze V, Jawahir IS (2014) An experimental study of cryogenic machining on nanocrystalline surface layer generation. Proc CIRP 13:169–174
Gershteyn G, Shevchenko N, Diekamp M, Brosius A, Schaper M, Bach FW (2012) Features of austenitic steels’ microstructure following plastic deformation. Materialwiss Werkstofftech 3:262–267
Aurich JC, Mayer P, Kirsch B, Eifler D, Smaga M, Skorupski R (2014) Characterization of deformation induced surface hardening during cryogenic turning of AISI 347 CIRP. Ann Manuf Technol 63(1):65–68
Jawahir IS, Attia H, Biermann D, Duflou J, Klocke F, Meyer D, Newman ST, Pusavec F, Putz M, Rech J, Schulze V, Umbrello D (2016) Cryogenic manufacturing processes. CIRP Ann Manuf Technol 65(2):713–736
Frölich D, Magyar B, Sauer B, Mayer P, Kirsch B, Aurich JC, Skorupski R, Smaga M, Beck T, Eifler D (2015) Investigation of wear resistance of dry and cryogenic turned metastable austenitic steel shafts and dry turned and ground carburized steel shafts in the radial shaft seal ring system. Wear 328–329:123–131
Smaga M, Skorupski R, Mayer P, Kirsch B, Aurich JC, Raid I, Seewig J, Man J, Eifler D, Beck T (2017) Influence of surface morphology on fatigue behavior of metastable austenitic stainless steel AISI 347 at ambient temperature and 300 °C. Proc Struct Integr 5:989–996
Mayer P, Skorupski R, Smaga M, Eifler D, Aurich JC (2014) Deformation induced surface hardening when turning metastable austenitic steel AISI 347 with different cryogenic cooling strategies. Proc CIRP 14:101–106
Mayer P, Kirsch B, Aurich JC (2014) Investigations on cryogenic turning to achieve surface hardening of metastable austenitic steel AISI 347. In: Advanced materials research 1018—proceedings of the WGP congress 2014—progress in production engineering pp 153–160
Becker S, Hotz H, Kirsch B, Aurich JC, von Harbou E, Müller R (2018) A finite element approach to calculate temperatures arising during cryogenic turning of metastable austenitic steel AISI 347. ASME J Manuf Sci Eng 140(10):101016–101016
Hotz H, Kirsch B, Gutwein S, Becker S, von Harbou E, Müller R, Aurich JC (2018) Kryogenes Drehen von X6CrNiNb18-10 - Einfluss des Schneidkantenradius auf Prozesskräfte und Prozessergebnisgrößen. wt Werkstattstechnik online 108(1–2):12–17
Hotz H, Kirsch B, Becker S, von Harbou E, Müller R, Aurich JC (2018) Improving the surface morphology of metastable austenitic steel AISI 347 in a two-step turning process. Proc CIRP 71:160–165
Becker H, Brandis H, Küppers W (1986) Zur Verfestigung instabil austenitischer nichtrostender Stähle und ihre Auswirkung auf das Umformverhalten von Feinblechen. Thyssen Edelstähle Technische Berichte 12(1):35–54
Nohara K, Yutaka O, Ohashi N (1977) Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagane 63(5):212–222
Eichelmann GC, Hull TC (1953) The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18—8 type stainless steel. Trans Am Soc Metals 45:77–104
Angel T (1954) Formation of martensite in austenitic stainless steels—effect of deformation, temperature, and composition. J Iron Steel Inst 177(1):165–174
Wayman CM, Bhadeshia HKDH (1996) Phase transformations, nondiffusive. Physical metallurgy, 4th edn. Elsevier, Amsterdam, pp 1507–1554
Monkmann FC, Cuff FB, Grant NJ (1957) Computation of Ms for stainless steels. Metal Progress 71:94–96
Pickering FB (1978) Physical metallurgy and the design of steels. Applied Science Publisher, London
Gladmann T, Hammond J, Marsh FW (1974) Austenitic stainless steels for cold forming. Sheet Metal Ind 51(5):219–239
Sjöberg IJ (1973) Influence of analysis on properties of stainless spring steel. Wire 23:155–158
Raman GS, Padmanabhan KA (1994) Influence of martensite formation and grain size on room temperature low cycle fatigue behavior of AISI 304LN austenitic stainless steel. Mater Sci Technol 10:614–620
Shrinivas V, Varma SK, Murr LE (1995) Deformation-Induced martensitic characteristics in 304 stainless and 316 stainless steels during room temperature rolling. Metal Mat Trans A 26:661–671
Talonen J, Nenonen P, Pape G, Hänninen H (2005) Effect of strain rate on the strain-induced γ → α’-martensite transformation and mechanical properties of austenitic stainless steels. Metal Mat Trans A 36:421–432