Generation of Cancerous Neural Stem Cells Forming Glial Tumor by Oncogenic Stimulation

Springer Science and Business Media LLC - Tập 8 Số 2 - Trang 532-545 - 2012
Ji‐Seon Lee1, Hong Jun Lee2,3, Bo‐Hyun Moon4, Seunghyun Song5, Mi‐Ok Lee5, Sung Han Shim5, Hyung Seok Kim6, Min Cheol Lee7, Jeong Taik Kwon8, Albert J. Fornace4, Seung Up Kim2,3, Hyuk‐Jin Cha1
1Department of Life Sciences, Sogang University, Seoul, Korea
2Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
3Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
4Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, USA
5Department of Biomedical Sciences, CHA University, Seoul, Korea
6Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
7Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
8Department of Neurosurgery, Chung-Ang University College of Medicine, Seoul, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sanai, N., Alvarez-Buylla, A., & Berger, M. S. (2005). Neural stem cells and the origin of gliomas. The New England Journal of Medicine, 353, 811–822.

Rich, J. N., Guo, C., McLendon, R. E., Bigner, D. D., Wang, X. F., & Counter, C. M. (2001). A genetically tractable model of human glioma formation. Cancer Research, 61, 3556–3560.

Zhu, Y., Guignard, F., Zhao, D., et al. (2005). Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell, 8, 119–130.

Kwon, C. H., Zhao, D., Chen, J., et al. (2008). Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Research, 68, 3286–3294.

Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703–716.

Alvarez-Buylla, A., & Lim, D. A. (2004). For the long run: Maintaining germinal niches in the adult brain. Neuron, 41, 683–686.

Alcantara Llaguno, S. R., Chen, J., & Parada, L. F. (2009). Signaling in malignant astrocytomas: Role of neural stem cells and its therapeutic implications. Clinical Cancer Research, 15, 7124–7129.

Fan, X., & Eberhart, C. G. (2008). Medulloblastoma stem cells. Journal of Clinical Oncology, 26, 2821–2827.

Alcantara Llaguno, S., Chen, J., Kwon, C., et al. (2009). Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell, 15, 45–56.

Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., & Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature, 400, 464–468.

Hahn, W. C. (2002). Immortalization and transformation of human cells. Molecules and Cells, 13, 351–361.

Rasheed, B. K., Wiltshire, R. N., Bigner, S. H., & Bigner, D. D. (1999). Molecular pathogenesis of malignant gliomas. Current Opinion in Oncology, 11, 162–167.

Chen, Z., Trotman, L. C., Shaffer, D., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436, 725–730.

Ferbeyre, G., de Stanchina, E., Lin, A. W., et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Molecular and Cellular Biology, 22, 3497–3508.

Reilly, K. M., Loisel, D. A., Bronson, R. T., McLaughlin, M. E., & Jacks, T. (2000). Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genetics, 26, 109–113.

Flax, J. D., Aurora, S., Yang, C., et al. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotechnology, 16, 1033–1039.

Satoh, J. I., Obayashi, S., Tabunoki, H., Wakana, T., Kim, S. U. (2010). Stable expression of Neurogenin 1 induces LGR5, a novel stem cell marker, in an immortalized human neural stem cell line HB1.F3. Cellular and Molecular Neurobiology, 30, 415–426.

Kim, S. U., Nagai, A., Nakagawa, E., et al. (2008). Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods in Molecular Biology, 438, 103–121.

Arnold, R. S., Shi, J., Murad, E., et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America, 98, 5550–5555.

Kim, S. U., Park, I. H., Kim, T. H., et al. (2006). Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology, 26, 129–140.

Cai, J., Wu, Y., Mirua, T., et al. (2002). Properties of a fetal multipotent neural stem cell (NEP cell). Developmental Biology, 251, 221–240.

Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.

Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.

Hemmati, H. D., Nakano, I., Lazareff, J. A., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 15178–15183.

Bleau, A., Hambardzumyan, D., Ozawa, T., et al. (2009). PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell, 4, 226–235.

Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., & Tang, D. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65, 6207–6219.

Ginestier, C., Hur, M. H., Charafe-Jauffret, E., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555–567.

Jiang, T., Collins, B. J., Jin, N., et al. (2009). Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Research, 69, 845–854.

Huang, E. H., Hynes, M. J., Zhang, T., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.

Chen, Y. C., Chen, Y. W., Hsu, H. S., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385, 307–313.

Theodoropoulos, P. A., Polioudaki, H., Agelaki, S., et al. (2010). Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Letters, 288, 99–106.

Mani, S., Guo, W., Liao, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.

Morel, A., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS One, 3, e2888.

Kabashima, A., Higuchi, H., Takaishi, H., et al. (2009). Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. International Journal of Cancer, 124, 2771–2779.

DiMeo, T., Anderson, K., Phadke, P., et al. (2009). A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Research, 69, 5364–5373.

Mizumoto, Y., Kyo, S., Ohno, S., et al. (2006). Creation of tumorigenic human endometrial epithelial cells with intact chromosomes by introducing defined genetic elements. Oncogene, 25, 5673–5682.

Brockschmidt, C., Hirner, H., Huber, N., et al. (2008). Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut, 57, 799–806.

McGillicuddy, L. T., Fromm, J. A., Hollstein, P. E., et al. (2009). Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. Cancer Cell, 16, 44–54.

Li, Y., Bollag, G., Clark, R., et al. (1992). Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell, 69, 275–281.

Kastan, M., Zhan, Q., El-Deiry, W., et al. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71, 587–597.

Hahn, W. C., & Weinberg, R. A. (2002). Rules for making human tumor cells. The New England Journal of Medicine, 347, 1593–1603.

Lundberg, A. S., Randell, S. H., Stewart, S. A., et al. (2002). Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene, 21, 4577–4586.

Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasi-Kimhi, O., & Oren, M. (1989). Wild-type p53 can inhibit oncogene-mediated focus formation. Proceedings of the National Academy of Sciences of the United States of America, 86, 8763–8767.

Kim, H. S., Shin, J. Y., Yun, J. Y., Ahn, D. K., & Le, J. Y. (2001). Immortalization of human embryonic fibroblasts by overexpression of c-myc and simian virus 40 large T antigen. Experimental & Molecular Medicine, 33, 293–298.

Hermeking, H., & Eick, D. (1994). Mediation of c-Myc-induced apoptosis by p53. Science, 265, 2091–2093.

Yu, K., Ravera, C., Chen, Y., & McMahon, G. (1997). Regulation of Myc-dependent apoptosis by p53, c-Jun N-terminal kinases/stress-activated protein kinases, and Mdm-2. Cell Growth & Differentiation, 8, 731–742.

Ahn, S. M., Byun, K., Kim, D., et al. (2008). Olig2-induced neural stem cell differentiation involves downregulation of Wnt signaling and induction of Dickkopf-1 expression. PloS One, 3, e3917.

Gupta, P. B., Onder, T. T., Jiang, G., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138, 645–659.

Shieh, S. Y., Ikeda, M., Taya, Y., & Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91, 325–334.

D'Orazi, G., Cecchinelli, B., Bruno, T., et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nature Cell Biology, 4, 11–19.

Tang, Y., Zhao, W., Chen, Y., Zhao, Y., & Gu, W. (2008). Acetylation is indispensable for p53 activation. Cell, 133, 612–626.