Generation of 3D representative volume elements for heterogeneous materials: A review

Progress in Materials Science - Tập 96 - Trang 322-384 - 2018
Swantje Bargmann1, Benjamin Klusemann2,3, Jürgen Markmann4,2, Jan Eike Schnabel2, Konrad Schneider5, Celal Soyarslan1, Jana Wilmers1
1Chair of Solid Mechanics, University of Wuppertal, Germany
2Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Germany
3Institute of Product and Process Innovation, Leuphana University of Lüneburg, Germany
4Institute of Materials Physics and Technology, Hamburg University of Technology, Germany
5Institute of Continuum Mechanics and Material Mechanics, Hamburg University of Technology, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altenbach, 2004

Aboudi, 2013

Zaoui, 2002, Continuum micromechanics: survey, J Eng Mech, 128, 808, 10.1061/(ASCE)0733-9399(2002)128:8(808)

Torquato, 2002, vol. 16

Ostoja-Starzewski, 2006, Material spatial randomness: from statistical to representative volume element, Probab Eng Mech, 21, 112, 10.1016/j.probengmech.2005.07.007

Hill, 1963, Elastic properties of reinforced solids: some theoretical principles, J Mech Phys Solids, 11, 357, 10.1016/0022-5096(63)90036-X

Drugan, 1996, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J Mech Phys Solids, 44, 497, 10.1016/0022-5096(96)00007-5

Gusev, 1997, Representative volume element size for elastic composites: a numerical study, J Mech Phys Solids, 45, 1449, 10.1016/S0022-5096(97)00016-1

Shan, 2002, Representative volume element for non-uniform micro-structure, Comput Mater Sci, 24, 361, 10.1016/S0927-0256(01)00257-9

Jiang, 2001, Scale and boundary conditions effects in elastic properties of random composites, Acta Mech, 148, 63, 10.1007/BF01183669

Kanit, 2003, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int J Solids Struct, 40, 3647, 10.1016/S0020-7683(03)00143-4

Dirrenberger, 2014, Towards gigantic RVE sizes for 3D stochastic fibrous networks, Int J Solids Struct, 51, 359, 10.1016/j.ijsolstr.2013.10.011

Harper, 2012, Representative volume elements for discontinuous carbon fibre composites - part 2: determining the critical size, Compos Sci Technol, 72, 204, 10.1016/j.compscitech.2011.11.003

Trias, 2006, Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers, Acta Mater, 54, 3471, 10.1016/j.actamat.2006.03.042

Gitman, 2007, Representative volume: existence and size determination, Eng Fract Mech, 74, 2518, 10.1016/j.engfracmech.2006.12.021

Hoang, 2016, Determining the size of RVE for nonlinear random composites in an incremental computational homogenization framework, J Eng Mech, 142, 04016018, 10.1061/(ASCE)EM.1943-7889.0001057

Khisaeva, 2006, On the size of RVE in finite elasticity of random composites, J Elast, 85, 153, 10.1007/s10659-006-9076-y

Ren, 2004, Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals, Mech Mater, 36, 1217, 10.1016/j.mechmat.2003.11.002

Shen, 2006, A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium, J Mech Mater Struct, 1, 1179, 10.2140/jomms.2006.1.1179

Huet, 1999, Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies, Mech Mater, 31, 787, 10.1016/S0167-6636(99)00038-1

Böhm, 2004

Zohdi, 2005

Mura, 1993

Nemat-Nasser, 1999

Dvorak, 2013, Micromechanics of composite materials, vol. 186

Doghri, 2000

McBride, 2012, Micro-to-macro transitions for heterogeneous material layers accounting for in-plane stretch, J Mech Phys Solids, 60, 1221, 10.1016/j.jmps.2012.01.003

Kanouté, 2009, Multiscale methods for composites: a review, Arch Comput Meth Eng, 16, 31, 10.1007/s11831-008-9028-8

Galvanetto, 2009, Multiscale modeling in solid mechanics: computational approaches (computational and experimental methods in structures), vol. 3

Charalambakis, 2010, Homogenization techniques and micromechanics. A survey and perspectives, Appl Mech Rev, 63, 030803, 10.1115/1.4001911

Nguyen, 2011, Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments, J Multisc Model, 3, 229, 10.1142/S1756973711000509

Klusemann, 2012, Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: comparisons and benchmarks, Euro J Mech A/Solids, 34, 21, 10.1016/j.euromechsol.2011.12.002

Ortolano J, Ortega JH, Olivella XO. A comparative study on homogenization strategies for multi-scale analysis of materials. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE); 2013.

Saeb, 2016, Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound, Appl Mech Rev, 68, 050801, 10.1115/1.4034024

Eshelby, 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc R Soc Lond A: Math, Phys Eng Sci, 241, 376, 10.1098/rspa.1957.0133

Mori, 1973, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metal, 21, 571, 10.1016/0001-6160(73)90064-3

Benveniste, 1987, A new approach to the application of Mori-Tanaka’s theory in composite materials, Mech Mater, 6, 147, 10.1016/0167-6636(87)90005-6

Hershey, 1954, The elasticity of an isotropic aggregate of anisotropic cubic crystals, J Appl Mech-Trans ASME, 21, 236, 10.1115/1.4010899

Kröner, 1958, Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Zeitschrift für Physik, 151, 504, 10.1007/BF01337948

Hill, 1965, A self-consistent mechanics of composite materials, J Mech Phys Solids, 13, 213, 10.1016/0022-5096(65)90010-4

Budiansky, 1965, On the elastic moduli of some heterogeneous materials, J Mech Phys Solids, 13, 223, 10.1016/0022-5096(65)90011-6

Lebensohn, 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metal Mater, 41, 2611, 10.1016/0956-7151(93)90130-K

Molinari, 1987, A self consistent approach of the large deformation polycrystal viscoplasticity, Acta Metal, 35, 2983, 10.1016/0001-6160(87)90297-5

Sharma, 2004, Size-dependent Eshelbys tensor for embedded nano-inclusions incorporating surface/interface energies, ASME J Appl Mech, 71, 663, 10.1115/1.1781177

Nemat-Nasser, 1981, On effective moduli of an elastic body containing periodically distributed voids, Quart J App Math, 39, 43, 10.1090/qam/99626

Dormieux, 2002, Micromechanical approach to the behavior of poroelastic materials, J Mech Phys Solids, 50, 2203, 10.1016/S0022-5096(02)00008-X

Nazarenko, 2015, Energy-equivalent inhomogeneity approach to analysis of effective properties of nanomaterials with stochastic structure, Int J Solids Struct, 59, 183, 10.1016/j.ijsolstr.2015.01.026

Hashin, 1968, Assessment of the self consistent scheme approximation: conductivity of particulate composites, J Compos Mater, 2, 284, 10.1177/002199836800200302

Garboczi, 2001, Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations, Mech Mater, 33, 455, 10.1016/S0167-6636(01)00067-9

Bernard, 2003, A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cem Concr Res, 33, 1293, 10.1016/S0008-8846(03)00039-5

Pichler, 2011, Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model, Cem Concr Res, 41, 467, 10.1016/j.cemconres.2011.01.010

Duschlbauer, 2006, Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches, J Compos Mater, 40, 2217, 10.1177/0021998306062317

Chou, 1980, A self-consistent approach to the elastic stiffness of short-fiber composites, J Compos Mater, 14, 178, 10.1177/002199838001400301

Pipes, 2003, Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements, Compos Sci Technol, 63, 1349, 10.1016/S0266-3538(03)00020-4

Feng, 2003, A micromechanical model for interpenetrating multiphase composites, Comput Mater Sci, 28, 486, 10.1016/j.commatsci.2003.06.005

Hellmich, 2004, Mineral collagen interactions in elasticity of bone ultrastructure a continuum micromechanics approach, Euro J Mech - A/Solids, 23, 783, 10.1016/j.euromechsol.2004.05.004

Nazarenko, 2014, Influence of interfaces on effective properties of nanomaterials with stochastically distributed spherical inclusions, Int J Solids Struct, 51, 954, 10.1016/j.ijsolstr.2013.11.024

Shahidi, 2016, Interfacial micromechanics assessment of classical rheological models. II: multiple interface sizes and viscosities, J Eng Mech, 142, 04015093, 10.1061/(ASCE)EM.1943-7889.0001013

Moulinec, 1994, A fast numerical method for computing the linear and nonlinear mechanical properties of composites, Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie, 318, 1417

Brisard, 2010, FFT-based methods for the mechanics of composites: a general variational framework, Comput Mater Sci, 49, 663, 10.1016/j.commatsci.2010.06.009

Torquato, 2002, Statistical description of microstructures, Ann Rev Mater Res, 32, 77, 10.1146/annurev.matsci.32.110101.155324

Torquato, 1998, Morphology and effective properties of disordered heterogeneous media, Int J Solids Struct, 35, 2385, 10.1016/S0020-7683(97)00142-X

Voigt, 1928

Reuss, 1929, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, ZAMM - J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49, 10.1002/zamm.19290090104

Hashin, 1963, A variational approach to the theory of the elastic behaviour of multiphase materials, J Mech Phys Solids, 11, 127, 10.1016/0022-5096(63)90060-7

Beran, 1966, Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media, Quart Appl Math, 24, 107, 10.1090/qam/99925

Milton, 1981, Bounds on the electromagnetic, elastic, and other properties of two-component composites, Phys Rev Lett, 46, 542, 10.1103/PhysRevLett.46.542

Milton, 1982, New bounds on effective elastic moduli of two-component materials, Proc R Soc Lond Ser A, Math Phys Sci, 380, 305, 10.1098/rspa.1982.0044

Talbot, 1992, Some simple explicit bounds for the overall behaviour of nonlinear composites, Int J Solids Struct, 29, 1981, 10.1016/0020-7683(92)90188-Y

Ponte Castañeda, 1991, The effective mechanical properties of nonlinear isotropic composites, J Mech Phys Solids, 39, 45, 10.1016/0022-5096(91)90030-R

Klusemann, 2013, Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture, Int J Plast, 50, 109, 10.1016/j.ijplas.2013.04.004

Sachtleber, 2002, Experimental investigation of plastic grain interaction, Mater Sci Eng: A, 336, 81, 10.1016/S0921-5093(01)01974-8

DeHoff, 1972, Experimental determination of the topological properties of three-dimensional microstructures, J Microsc, 95, 69, 10.1111/j.1365-2818.1972.tb03712.x

Rhines, 1974, Mechanism of steady-state grain growth in aluminum, Metall Trans, 5, 413, 10.1007/BF02644109

Weiland, 1994, The role of particle stimulated nucleation during recrystallization of an aluminum-manganese alloy, Zeitschrift für Metallkunde, 85, 592

Liu, 2000, On the sampling of serial sectioning technique for three dimensional space-filling grain structures, Image Anal Stereol, 19, 81, 10.5566/ias.v19.p81-84

Liu, 2002, Three-dimensional grain topology–size relationships in a real metallic polycrystal compared with theoretical models, Mater Sci Eng: A, 326, 276, 10.1016/S0921-5093(01)01497-6

Spowart, 2003, Collecting and analyzing microstructures in three dimensions: a fully automated approach, Jom, 55, 35, 10.1007/s11837-003-0173-0

Raya, 1990, Shape-based interpolation of multidimensional objects, IEEE Trans Med Imag, 9, 32, 10.1109/42.52980

Lyroudia, 1993, Computerized three-dimensional reconstruction: a method to study pulpal vessels and nerves, J Endodont, 19, 604, 10.1016/S0099-2399(06)80274-8

Kubis, 2004, Focused ion-beam tomography, Metall Mater Trans A, 35, 1935, 10.1007/s11661-004-0142-4

Herman, 1992, Shape-based interpolation, IEEE Comput Graph Appl, 12, 69, 10.1109/38.135915

Grevera, 1998, An objective comparison of 3-d image interpolation methods, IEEE Trans Med Imag, 17, 642, 10.1109/42.730408

Bors, 2002, Binary morphological shape-based interpolation applied to 3-d tooth reconstruction, IEEE Trans Med Imag, 21, 100, 10.1109/42.993129

Münch, 2006, FIB-nanotomography of particulate systems Part II: particle recognition and effect of boundary truncation, J Am Ceram Soc, 89, 2586, 10.1111/j.1551-2916.2006.01121.x

Jørgensen, 2010, A framework for automatic segmentation in three dimensions of microstructural tomography data, Ultramicroscopy, 110, 216, 10.1016/j.ultramic.2009.11.013

Simmons, 2009, Application and further development of advanced image processing algorithms for automated analysis of serial section image data, Model Simul Mater Sci Eng, 17, 025002, 10.1088/0965-0393/17/2/025002

Madej, 2017, Digital material representation model of porous microstructure based on 3d reconstruction algorithm, Arch Metal Mater, 62, 563, 10.1515/amm-2017-0083

Fredrich, 1999, 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes, Phys Chem Earth, Part A: Solid Earth Geodesy, 24, 551, 10.1016/S1464-1895(99)00079-4

Forsman, 1918, Undersökning av rymdstrukturen hos ett kolstå av hypereutectoid sammansättning, Jernkontorets Ann, 102, 1

Chawla, 2004, Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites, Scripta Mater, 51, 161, 10.1016/j.scriptamat.2004.03.043

Wiederkehr, 2010, An image morphing method for 3D reconstruction and FE-analysis of pore networks in thermal spray coatings, Comput Mater Sci, 47, 881, 10.1016/j.commatsci.2009.11.019

Bansal, 2006, High-resolution three-dimensional reconstruction: a combined scanning electron microscope and focused ion-beam approach, J Vac Sci Technol B, 24, 554, 10.1116/1.2167987

Groeber, 2006, 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system, Mater Character, 57, 259, 10.1016/j.matchar.2006.01.019

Zaefferer, 2008, Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization, Metall Mater Trans A, 39, 374, 10.1007/s11661-007-9418-9

Korte, 2011, Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars, Acta Mater, 59, 7241, 10.1016/j.actamat.2011.08.022

Holzer, 2012, Review of FIB-tomography, 410

Mangipudi, 2016, A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures, Ultramicroscopy, 163, 38, 10.1016/j.ultramic.2016.01.004

Jones, 2014, Investigation of slice thickness and shape milled by a focused ion beam for three-dimensional reconstruction of microstructures, Ultramicroscopy, 139, 20, 10.1016/j.ultramic.2014.01.003

Hu, 2016, Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour, Philos Magaz, 96, 3322, 10.1080/14786435.2016.1222087

Adams, 1998, The mesostructure – properties linkage in polycrystals, Prog Mater Sci, 43, 1, 10.1016/S0079-6425(98)00002-4

Larson, 2002, Three-dimensional X-ray structural microscopy with submicrometre resolution, Nature, 415, 887, 10.1038/415887a

Groeber, 2008, A framework for automated analysis and simulation of 3D polycrystalline microstructures.: Part 1: statistical characterization, Acta Mater, 56, 1257, 10.1016/j.actamat.2007.11.041

Groeber, 2008, A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: synthetic structure generation, Acta Mater, 56, 1274, 10.1016/j.actamat.2007.11.040

Diehl, 2017, Identifying structure–property relationships through DREAM.3D representative volume elements and DAMASK crystal plasticity simulations: an integrated computational materials engineering approach, JOM, 1

Adams, 1986, Description of the intercrystalline structure distribution in polycrystalline materials, Metall Trans A, 17, 2199, 10.1007/BF02645918

Saylor, 2002, Determining crystal habits from observations of planar sections, J Am Ceram Soc, 85, 2799, 10.1111/j.1151-2916.2002.tb00531.x

Zhang, 2004, Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning, Metall Mater Trans A, 35, 1927, 10.1007/s11661-004-0141-5

Brahme, 2006, 3D reconstruction of microstructure in a commercial purity aluminum, Scripta Mater, 55, 75, 10.1016/j.scriptamat.2006.02.017

Kelly, 2007, Atom probe tomography, Rev Scient Instrum, 78, 031101, 10.1063/1.2709758

Katnagallu, 2017, High fidelity reconstruction of experimental field ion microscopy data by atomic relaxation simulations, Microsc Microanal, 23, 642, 10.1017/S1431927617003877

Miao, 2002, High resolution 3D X-ray diffraction microscopy, Phys Rev Lett, 89, 088303, 10.1103/PhysRevLett.89.088303

Ludwig, 2009, New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging, Mater Sci Eng: A, 524, 69, 10.1016/j.msea.2009.04.009

Chen, 2010, Morphological and topological analysis of coarsened nanoporous gold by X-ray nanotomography, Appl Phys Lett, 96, 043122, 10.1063/1.3285175

Döbrich, 2004, Quantitative characterization of the three-dimensional microstructure of polycrystalline Al-Sn using X-ray microtomography, Metall Mater Trans A, 35, 1953, 10.1007/s11661-004-0144-2

Döbrich K. Tomographische Charakterisierung und quantitative Bestimmung der Korngrößenkorrelation in polykristallinem Al-Sn, Diploma Thesis, Saarland University, Saarbrücken, Germany; 2002.

Midgley, 2009, Electron tomography and holography in materials science, Nat Mater, 8, 271, 10.1038/nmat2406

Maire, 2001, On the application of X-ray microtomography in the field of materials science, Adv Eng Mater, 3, 539, 10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6

Ferrié, 2006, Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element, Acta Mater, 54, 1111, 10.1016/j.actamat.2005.10.053

Salvo, 2010, 3D imaging in material science: application of X-ray tomography, Comp Rend Phys, 11, 641, 10.1016/j.crhy.2010.12.003

Renversade, 2016, Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy, IUCrJ, 3, 32, 10.1107/S2052252515019995

Yang, 2004, Differential-aperture X-ray structural microscopy: a submicron-resolution three-dimensional probe of local microstructure and strain, Micron, 35, 431, 10.1016/j.micron.2004.02.004

Zhang, 2015, Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn, Int J Plast, 69, 21, 10.1016/j.ijplas.2015.01.003

Eisenlohr, 2017, Subsurface grain morphology reconstruction by differential aperture X-ray microscopy, JOM, 1

Poulsen, 2001, Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders, J Appl Crystal, 34, 751, 10.1107/S0021889801014273

Pokharel, 2015, In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu, Int J Plast, 67, 217, 10.1016/j.ijplas.2014.10.013

Lauridsen, 2006, Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy, Scripta Mater, 55, 51, 10.1016/j.scriptamat.2006.02.028

Miao, 2012, Coherent X-ray diffraction imaging, IEEE J Select Top Quant Electron, 18, 399, 10.1109/JSTQE.2011.2157306

Pfeifer, 2006, Three-dimensional mapping of a deformation field inside a nanocrystal, Nature, 442, 63, 10.1038/nature04867

Vaxelaire, 2010, Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent X-ray diffraction, New J Phys, 12, 035018, 10.1088/1367-2630/12/3/035018

Chen-Wiegart, 2017, Evolution of dealloying induced strain in nanoporous gold crystals, Nanoscale, 10.1039/C6NR09635B

Reid, 2008, Image-based finite element mesh construction for material microstructures, Comput Mater Sci, 43, 989, 10.1016/j.commatsci.2008.02.016

Coffman, 2012, OOF3D: an image-based finite element solver for materials science, Math Comp Simul, 82, 2951, 10.1016/j.matcom.2012.03.003

Yuan, 2008, Toward realization of computational homogenization in practice, Int J Numer Meth Eng, 73, 361, 10.1002/nme.2074

Kassem G. Micromechanical material models for polymer composites through advanced numerical simulation techniques, Ph.D. Dissertation. RWTH Aachen (Germany); 2010.

Schneider, 2017, Fully periodic RVEs for technological relevant composites: not worth the effort!, J Mech Mater Struct, 12, 471, 10.2140/jomms.2017.12.471

Kawasaki, 1989, Vertex models for two-dimensional grain growth, Philos Magaz B, 60, 399, 10.1080/13642818908205916

Fuchizaki, 1995, Computer modelling of three-dimensional cellular pattern growth, Philos Magaz B, 71, 333, 10.1080/13642819508239038

Weygand, 1999, Three-dimensional grain growth: a vertex dynamics simulation, Philos Magaz B, 79, 703, 10.1080/13642819908205744

Syha, 2009, A generalized vertex dynamics model for grain growth in three dimensions, Model Simul Mater Sci Eng, 18, 015010, 10.1088/0965-0393/18/1/015010

Mora, 2008, Effect of a finite quadruple junction mobility on grain microstructure evolution: theory and simulation, Acta Mater, 56, 1151, 10.1016/j.actamat.2007.11.013

Mora, 2008, Three-dimensional grain growth: analytical approaches and computer simulations, Acta Mater, 56, 5915, 10.1016/j.actamat.2008.08.006

Brakke, 1992, The surface evolver, Exper Math, 1, 141, 10.1080/10586458.1992.10504253

Wakai, 2000, Three-dimensional microstructural evolution in ideal grain growth – general statistics, Acta Mater, 48, 1297, 10.1016/S1359-6454(99)00405-X

Janssens, 2010, An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials, Math Comp Simul, 80, 1361, 10.1016/j.matcom.2009.02.011

Miodownik, 2002, A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys, J Light Metals, 2, 125, 10.1016/S1471-5317(02)00039-1

Raabe, 2002, Cellular automata in materials science with particular reference to recrystallization simulation, Ann Rev Mater Res, 32, 53, 10.1146/annurev.matsci.32.090601.152855

Janssens, 2003, Random grid, three-dimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth, Model Simul Mater Sci Eng, 11, 157, 10.1088/0965-0393/11/2/304

Yazdipour, 2008, Microstructural modeling of dynamic recrystallization using irregular cellular automata, Comput Mater Sci, 44, 566, 10.1016/j.commatsci.2008.04.027

Raabe, 1999, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena, Philos Magaz A, 79, 2339, 10.1080/01418619908214288

Brown, 1995, Three-dimensional cellular automaton models of microstructural evolution during solidification, J Mater Sci, 30, 1144, 10.1007/BF00356112

Cortie, 1993, Simulation of metal solidification using a cellular automaton, Metall Trans B, 24B, 1045, 10.1007/BF02660996

Pavlyk, 2004, Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling, Model Simul Mater Sci Eng, 12, 33, 10.1088/0965-0393/12/1/S03

Rappaz, 1993, Probabilistic modelling of microstrcuture formnation in solidification processes, Acta Metal Mater, 41, 345, 10.1016/0956-7151(93)90065-Z

Spittle, 1995, A cellular automaton model of steady-state columnar-dendritic growth in binary alloys, J Mater Sci, 30, 3989, 10.1007/BF00360698

Wang, 2003, A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection, Acta Mater, 51, 2971, 10.1016/S1359-6454(03)00110-1

Zhu, 2002, A three dimensional modified cellular automaton model for the prediction of solidification microstructures, ISIJ Int, 42, 520, 10.2355/isijinternational.42.520

Bos, 2010, A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle, Comput Mater Sci, 48, 692, 10.1016/j.commatsci.2010.03.010

Ding, 2002, Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach, Comput Mater Sci, 23, 209, 10.1016/S0927-0256(01)00211-7

Hallberg, 2010, Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Comput Mater Sci, 49, 25, 10.1016/j.commatsci.2010.04.012

Hesselbarth, 1991, Simulation of recrystallization by cellular automata, Acta Metal Mater, 39, 2135, 10.1016/0956-7151(91)90183-2

Kühbach, 2016, A statistical ensemble cellular automaton microstructure model for primary recrystallization, Acta Mater, 107, 366, 10.1016/j.actamat.2016.01.068

Kugler, 2006, Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model, Comput Mater Sci, 37, 284, 10.1016/j.commatsci.2005.07.005

Popova, 2015, Coupled crystal plasticity probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys, Int J Plast, 66, 85, 10.1016/j.ijplas.2014.04.008

Salehi, 2012, Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model, Comput Mater Sci, 53, 145, 10.1016/j.commatsci.2011.09.026

Zheng, 2008, Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: a cellular automaton modeling, Comput Mater Sci, 44, 507, 10.1016/j.commatsci.2008.04.010

Zheng, 2013, Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model, Acta Mater, 61, 5504, 10.1016/j.actamat.2013.05.040

Lan, 2005, Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model, Acta Mater, 53, 991, 10.1016/j.actamat.2004.10.045

Ding, 2006, Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle, J Cryst Growth, 293, 489, 10.1016/j.jcrysgro.2006.05.060

Lan, 2006, A mesoscale cellular automaton model for curvature-driven grain growth, Metall Mater Trans B, 37B, 119, 10.1007/s11663-006-0091-y

Raghavan, 2007, Modeling the grain growth kinetics by cellular automaton, Mater Sci Eng A, 445–446, 203, 10.1016/j.msea.2006.09.023

Saluja, 2012, Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks, Comput Mater Sci, 58, 87, 10.1016/j.commatsci.2012.01.036

Anderson, 1989, Computer simulation of normal grain growth in three dimensions, Philos Magaz B, 59, 293, 10.1080/13642818908220181

Radhakrishnan, 1995, Monte Carlo simulation of grain boundary pinning in the weld heat-affected zone, Metall Mater Trans A, 26, 2123, 10.1007/BF02670683

Qin, 2010, Phase field method, Mater Sci Technol, 26, 803, 10.1179/174328409X453190

Provatas, 2011

Boettinger, 2002, Phase-field simulation of solidification, Ann Rev Mater Res, 32, 163, 10.1146/annurev.matsci.32.101901.155803

Krill, 2002, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater, 50, 3059, 10.1016/S1359-6454(02)00084-8

Warren, 2003, Extending phase field models of solidification to polycrystalline materials, Acta Mater, 51, 6035, 10.1016/S1359-6454(03)00388-4

Long-Qing, 2002, Phase-field models for microstructure evolution, Ann Rev Mater Res, 32, 113, 10.1146/annurev.matsci.32.112001.132041

Singer-Loginova, 2008, The phase field technique for modeling multiphase materials, Rep Prog Phys, 71, 106501, 10.1088/0034-4885/71/10/106501

Hoetzer, 2016, Phase-field study of pore-grain boundary interaction, J Ceram Soc Jpn, 124, 329, 10.2109/jcersj2.15266

Kim, 2006, Computer simulations of two-dimensional and three-dimensional ideal grain growth, Phys Rev E, 74, 061605, 10.1103/PhysRevE.74.061605

Kim, 2014, Phase-field modeling for 3D grain growth based on a grain boundary energy database, Model Simul Mater Sci Eng, 22, 034004, 10.1088/0965-0393/22/3/034004

Moelans, 2009, Comparative study of two phase-field models for grain growth, Comput Mater Sci, 46, 479, 10.1016/j.commatsci.2009.03.037

Nestler, 2005, A 3d parallel simulator for crystal growth and solidification in complex alloy systems, J Cryst Growth, 275, e273, 10.1016/j.jcrysgro.2004.10.121

Fan, 1997, Computer simulation of grain growth using a continuum field model, Acta Mater, 45, 611, 10.1016/S1359-6454(96)00200-5

Demirel, 2002, Linking experimental characterization and computational modeling of grain growth in Al-foil, Interf Sci, 10, 137, 10.1023/A:1015867912262

Demirel, 2003, Bridging simulations and experiments in microstructure evolution, Phys Rev Lett, 90, 016106, 10.1103/PhysRevLett.90.016106

Rios, 2006, Comparison of analytical grain size distributions with three-dimensional computer simulations and experimental data, Scripta Mater, 54, 1633, 10.1016/j.scriptamat.2006.01.007

Aurenhammer, 1991, Voronoi diagrams – a survey of a fundamental geometric data structure, ACM Comput Surv (CSUR), 23, 345, 10.1145/116873.116880

Preparata, 1985

Okabe, 2000

Ibrahimbegovic, 2003, Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material, Comp Struct, 81, 1255, 10.1016/S0045-7949(03)00040-3

Logé, 2008, Linking plastic deformation to recrystallization in metals using digital microstructures, Philos Magaz, 88, 3691, 10.1080/14786430802502575

Xu, 2009, Topological and statistical properties of a constrained Voronoi tessellation, Philos Magaz, 89, 349, 10.1080/14786430802647065

Hitti, 2012, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Comput Mater Sci, 61, 224, 10.1016/j.commatsci.2012.04.011

Lavergne, 2013, Effects of grain size distribution and stress heterogeneity on yield stress of polycrystals: a numerical approach, Comput Mater Sci, 77, 387, 10.1016/j.commatsci.2013.04.061

Fritzen, 2009, Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations, Comput Mech, 43, 701, 10.1007/s00466-008-0339-2

Luther, 2009, Polycrystal models for the analysis of intergranular crack growth in metallic materials, Eng Fract Mech, 76, 2332, 10.1016/j.engfracmech.2009.07.006

Quey, 2011, Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing, Comp Meth Appl Mech Eng, 200, 1729, 10.1016/j.cma.2011.01.002

Bargmann, 2011, An extended crystal plasticity model for latent hardening in polycrystals, Comput Mech, 48, 631, 10.1007/s00466-011-0609-2

Kim, 2002, Voronoi diagram as an analysis tool for spatial properties for ceramics, J Ceram Process Res, 3, 150

Zhang, 2005, Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling, Int J Plast, 21, 801, 10.1016/j.ijplas.2004.05.010

Coster, 2011, A microstructural model by space tessellation for a sintered ceramic: cerine, Image Anal Stereol, 24, 105, 10.5566/ias.v24.p105-116

Mitić, 2013, Electronic ceramic structure within the Voronoi cells model and microstructure fractals contacts surfaces new frontier applications, Sci Sinter, 45, 223, 10.2298/SOS1302223M

Gao, 2016, Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model, Comp Geotech, 78, 203, 10.1016/j.compgeo.2016.05.019

Ghazvinian, 2014, 3d random voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing, J Rock Mech Geotech Eng, 6, 506, 10.1016/j.jrmge.2014.09.001

Lebensohn, 2009, Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals, Acta Mater, 57, 1405, 10.1016/j.actamat.2008.10.057

Montagnat, 2014, Multiscale modeling of ice deformation behavior, J Struct Geol, 61, 78, 10.1016/j.jsg.2013.05.002

Suquet, 2012, Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep, Proc IUTAM, 3, 76, 10.1016/j.piutam.2012.03.006

Williams, 1952, A study of grain shape in an aluminum alloy and other applications of stereoscopic microradiography, Trans Am Inst Min Metal Engin, 194, 755

Hull, 1988, Plane section and spatial characteristics of equiaxed β-brass grains, Mater Sci Technol, 4, 778, 10.1179/mst.1988.4.9.778

Du, 1999, Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev, 41, 637, 10.1137/S0036144599352836

Imai, 1985, Voronoi diagram in the Laguerre geometry and its applications, SIAM J Comput, 14, 93, 10.1137/0214006

Kumar, 1994, Simulation of material microstructure using a 3d Voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials, Acta Metal Mater, 42, 3917, 10.1016/0956-7151(94)90170-8

Kumar, 1996, Micro-stress distribution within polycrystalline aggregate, Acta Mech, 114, 203, 10.1007/BF01170404

Barber, 1996, The quickhull algorithm for convex hulls, ACM Trans Math Softw (TOMS), 22, 469, 10.1145/235815.235821

Rycroft C. Voro++: a three-dimensional Voronoi cell library in C++. Lawrence Berkeley National Laboratory; 2009.

Raabe, 2002, On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction, Acta Mater, 50, 4379, 10.1016/S1359-6454(02)00276-8

Zhao, 2007, Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM, Acta Mater, 55, 2361, 10.1016/j.actamat.2006.11.035

Ritz, 2009, Sensitivity to grain discretization of the simulated crystal stress distributions in fcc polycrystals, Model Simul Mater Sci Eng, 17, 015001, 10.1088/0965-0393/17/1/015001

Kral, 2000, Three-dimensional analysis of microstructures, Mater Character, 45, 17, 10.1016/S1044-5803(00)00046-2

Adachi, 2010, Hierarchical 3d/4d characterization on deformation behavior of austenitic and pearlitic steels, Mater Sci Forum, 638–643, 2505, 10.4028/www.scientific.net/MSF.638-642.2505

Wang, 2010, Quantitative three-dimensional characterization of pearlite spheroidization, Acta Mater, 58, 4849, 10.1016/j.actamat.2010.05.023

Simonelli, 2014

Barry, 2008

Kato, 2007, Three-dimensional structural analysis of a block copolymer by scanning electron microscopy combined with a focused ion beam, J Polym Sci: Part B Polym Phys, 45, 677, 10.1002/polb.21088

Berisha, 2015, Multiscale modeling of failure initiation in a ferritic-pearlitic steel, Acta Mater, 100, 191, 10.1016/j.actamat.2015.08.035

Yamanaka, 2008, Coupled simulation of microstructural formation and deformation behavior of ferrite-pearlite steel by phase-field method and homogenization method, Mater Sci Eng A, 480, 244, 10.1016/j.msea.2007.08.066

Steinmetz, 2016, Phase-field study of the pattern formation in Al-Ag-Cu under the influence of the melt concentration, Comput Mater Sci, 121, 6, 10.1016/j.commatsci.2016.04.025

Yang, 2001, Prediction of yield stress for polysynthetically twinned TiAl crystals, Scripta Mater, 45, 293, 10.1016/S1359-6462(01)01030-2

Marketz, 2003, Deformation mechanisms in TiAl intermetallics - experiments and modeling, Int J Plast, 19, 281, 10.1016/S0749-6419(01)00036-5

Butzke, 2015, Thermomechanical modelling of polysynthetically twinned TiAl crystals, Philos Magaz, 95, 2607, 10.1080/14786435.2015.1070968

Schlögl, 1996, Micromechanical modelling of TiAl intermetallics, Comput Mater Sci, 7, 34, 10.1016/S0927-0256(96)00057-2

Schlögl, 1997, The role of slip and twinning in the deformation behaviour of polysynthetically twinned crystals of TiAl: a micromechanical model, Philos Magaz A, 75, 621, 10.1080/01418619708207193

Schnabel, 2017, Accessing colony boundary strengthening of fully lamellar TiAl alloys via micromechanical modeling, Materials, 10, 896, 10.3390/ma10080896

Werwer, 2005

Kowalczyk-Gajewska, 2011, Micromechanical model of polycrystalline materials with lamellar substructure, Arch Metal Mater, 56, 509, 10.2478/v10172-011-0055-3

Zambaldi, 2010, Crystal plasticity modelling and experiments for deriving microstructure-property relationships in γ-TiAl based alloys, J Phys: Conf Ser, 240, 012140

Dodla, 2015, Finite element simulation of lamellar copper-silver composites, Comput Mater Sci, 101, 29, 10.1016/j.commatsci.2015.01.012

Ekh M, Larijani N, Lindfeldt E. A comparison of approaches to model anisotropy evolution in pearlitic steel. In: Proceedings of 11th world congress on computational mechanics (WCCM XI); 2014.

Abouridouane, 2012, A new 3D multiphase FE model for micro cutting ferritic-pearlitic carbon steels, Ann - Manuf Technol, 61, 71, 10.1016/j.cirp.2012.03.075

Venkatramani, 2007, A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys, Acta Mater, 55, 3971, 10.1016/j.actamat.2007.03.017

Brockman, 2003, Analysis of elastic-plastic deformation in TiAl polycrystals, Int J Plast, 19, 1749, 10.1016/S0749-6419(02)00102-X

Werwer, 2000, Numerical simulation of plastic deformation and fracture in polysynthetically twinned (PST) crystals of TiAl, Comput Mater Sci, 19, 97, 10.1016/S0927-0256(00)00144-0

Venkataramani, 2006, Crystal plasticity based FE model for understanding microstructural effects on creep and dwell fatigue in Ti-6242, J Eng Mater Technol, 128, 356, 10.1115/1.2204942

Zhang, 2007, Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V, Int J Plast, 23, 1328, 10.1016/j.ijplas.2006.11.009

Schaden, 2006, Numerical modelling of kinking in lamellar γ-TiAl based alloys, Adv Eng Mater, 8, 1109, 10.1002/adem.200600238

Morrissey, 2003, Microstructure-scale modeling of HCF deformation, Mech Mater, 35, 295, 10.1016/S0167-6636(02)00282-X

Kabir, 2010, Numerical investigation of room-temperature deformation behavior of a duplex type γTiAl alloy using a multi-scale modeling approach, Acta Mater, 58, 5834, 10.1016/j.actamat.2010.06.058

Roos, 2004, Multiscale modelling of titanium aluminides, Int J Plast, 20, 811, 10.1016/j.ijplas.2003.08.005

Peng, 2010, A microstructure-damage-based description for the size effect of the constitutive behavior of pearlitic steels, Int J Damage Mech, 19, 821, 10.1177/1056789509359665

Lindfeldt, 2012, Multiscale modeling of the mechanical behaviour of pearlitic steel, Tech Mech, 32, 2

Deka, 2006, Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242, Metall Mater Trans A, 37, 1371, 10.1007/s11661-006-0082-2

Zambaldi, 2011, Analysis of the plastic anisotropy and pre-yielding of (γ/α2)-phase titanium aluminide microstructures by crystal plasticity simulation, Intermetallics, 19, 820, 10.1016/j.intermet.2011.01.012

Jeon, 2012, Effects of dendrite size on tensile deformation behavior in Zr-based amorphous matrix composites containing ductile dendrites, Metall Mater Trans A, 43, 3663, 10.1007/s11661-012-1168-7

Chen, 2002, Phase-field models for microstructure evolution, Annu Rev Mater Res, 32, 113, 10.1146/annurev.matsci.32.112001.132041

Gandin, 1999, A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures, Metall Mater Trans A, 30, 3153, 10.1007/s11661-999-0226-2

Suzuki, 2002, Phase-field model of dendritic growth, J Cryst Growth, 237–239, 125, 10.1016/S0022-0248(01)01891-7

Steinbach, 2009, Phase-field models in materials science, Model Simul Mater Sci Eng, 17, 073001, 10.1088/0965-0393/17/7/073001

Zhu, 2001, A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys, ISIJ Int, 41, 436, 10.2355/isijinternational.41.436

Beltran-Sanchez, 2003, Growth of solutal dendrites: a cellular automaton model and its quantitative capabilities, Metall Mater Trans A, 34A, 367, 10.1007/s11661-003-0338-z

Yin, 2011, Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods, Acta Mater, 59, 3124, 10.1016/j.actamat.2011.01.052

Nastac, 1999, Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Mater, 47, 4253, 10.1016/S1359-6454(99)00325-0

Gibson, 1997

Wang, 2011, Co-continuous composite materials for stiffness, strength, and energy dissipation, Adv Mater, 23, 1524, 10.1002/adma.201003956

Weissmüller, 2003, Charge-induced reversible strain in a metal, Science, 300, 312, 10.1126/science.1081024

Erlebacher, 2001, Evolution of nanoporosity in dealloying, Nature, 410, 450, 10.1038/35068529

Okulov, 2017, Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone, Scient Rep, 7, 20, 10.1038/s41598-017-00048-4

Zhang, 2005, Co-continuous metalceramic nanocomposites, Nano Lett, 5, 1035, 10.1021/nl050379t

Utracki, 1989

Thomas, 1988, Periodic area-minimizing surfaces in block copolymers, Nature, 334, 598, 10.1038/334598a0

Lee, 2012, Periodic bicontinuous composites for high specific energy absorption, Nano Lett, 12, 4392, 10.1021/nl302234f

Al-Ketan, 2017, Mechanical properties of a new type of architected interpenetrating phase composite materials, Adv Mater Technol, 2, 10.1002/admt.201600235

Soyarslan C, Pradas M, Bargmann S. Effective elastic properties of 3D stochastic bicontinuous composites 2018, [submitted for publication].

Spowart, 2006, Automated serial sectioning for 3-D analysis of microstructures, Scripta Mater, 55, 5, 10.1016/j.scriptamat.2006.01.019

Mertens, 2017, Analysis of thermal history effects on mechanical anisotropy of 3d-printed polymer matrix composites via in situ x-ray tomography, J Mater Sci, 52, 12185, 10.1007/s10853-017-1339-4

Rösner, 2007, Reconstructing a nanoporous metal in three dimensions: an electron tomography study of dealloyed gold leaf, Adv Eng Mater, 9, 535, 10.1002/adem.200700063

Fujita, 2008, Three-dimensional morphology of nanoporous gold, Appl Phys Lett, 92, 251902, 10.1063/1.2948902

Chen, 2008, Full-field hard X-ray microscopy below 30 nm: a challenging nanofabrication achievement, Nanotechnology, 19, 395302, 10.1088/0957-4484/19/39/395302

Glover, 2002, Limits to magnetic resonance microscopy, Rep Prog Phys, 65, 1489, 10.1088/0034-4885/65/10/203

Cahn, 1958, Free energy of a nonuniform system. I. Interfacial free energy, J Chem Phys, 28, 258, 10.1063/1.1744102

Gaylord, 1996

Zhang, 2016, Extreme-scale phase field simulations of coarsening dynamics on the sunway taihulight supercomputer, 34

Carolan, 2015, Co-continuous polymer systems: a numerical investigation, Comput Mater Sci, 98, 24, 10.1016/j.commatsci.2014.10.039

Ngô, 2017, On the origin of the anomalous compliance of dealloying-derived nanoporous gold, Scripta Mater, 130, 74, 10.1016/j.scriptamat.2016.11.006

Sun, 2013, Mechanical properties and scaling laws of nanoporous gold, J Appl Phys, 113, 023505, 10.1063/1.4774246

Schwarz, 1933

Schoen AH. Infinite periodic minimal surfaces without self-intersections, NASA Technical Note TN D-5541; 1970.

Massey, 1997

Almsherqi, 2009, Chapter 6 cubic membranes: the missing dimension of cell membrane organization, vol. 274, 275, 10.1016/S1937-6448(08)02006-6

Wohlgemuth, 2001, Triply periodic bicontinuous cubic microdomain morphologies by symmetries, Macromolecules, 34, 6083, 10.1021/ma0019499

Lambert, 1996, Triply periodic level surfaces as models for cubic tricontinuous block copolymer morphologies, Philos Trans R Soc Lond A: Math, Phys Eng Sci, 354, 2009, 10.1098/rsta.1996.0089

Lin, 2017, Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces, Angew Chem, 129, 7241, 10.1002/ange.201702591

Soyarslan, 2018, 3D stochastic bicontinuous microstructures: generation, topology and elasticity, Acta Mater, 149, 326, 10.1016/j.actamat.2018.01.005

Roberts, 2002, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure, Proc R Soc Lond A: Math, Phys Eng Sci, 458, 1033, 10.1098/rspa.2001.0900

Cahn, 1965, Phase separation by spinodal decomposition in isotropic systems, J Chem Phys, 42, 93, 10.1063/1.1695731

Teubner, 1991, Level surfaces of gaussian random fields and microemulsions, EPL (Europhys Lett), 14, 403, 10.1209/0295-5075/14/5/003

Lombardo, 1994, Influence of ABS type on morphology and mechanical properties of PC/ABS blends, J Appl Polym Sci, 54, 1697, 10.1002/app.1994.070541113

Donald, 2003, The use of environmental scanning electron microscopy for imaging wet and insulating materials, Nat Mater, 2, 511, 10.1038/nmat898

Scott, 2003, Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films, Ultramicroscopy, 97, 151, 10.1016/S0304-3991(03)00040-8

Efimov, 2007, Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples, J Microsc, 226, 207, 10.1111/j.1365-2818.2007.01773.x

Eaton, 2010

Chawla, 2006, Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites, Acta Mater, 54, 1541, 10.1016/j.actamat.2005.11.027

Jung, 2014, Three-dimensional characterization of SiC particle-reinforced al composites using serial sectioning tomography and thermo-mechanical finite element simulation, Metall Mater Trans A, 45, 5679, 10.1007/s11661-014-2520-x

Zankel, 2014, Serial sectioning methods for 3D investigations in materials science, Micron, 62, 66, 10.1016/j.micron.2014.03.002

Trueman, 2013, 3-d tomography by automated in situ block face ultramicrotome imaging using an FEG-SEM to study complex corrosion protective paint coatings, Corr Sci, 75, 376, 10.1016/j.corsci.2013.06.021

Ender, 2011, Three-dimensional reconstruction of a composite cathode for lithium-ion cells, Electrochem Commun, 13, 166, 10.1016/j.elecom.2010.12.004

Rodenas, 2014, Metal–organic framework nanosheets in polymer composite materials for gas separation, Nat Mater, 14, 48, 10.1038/nmat4113

Sheidaei, 2013, 3-d microstructure reconstruction of polymer nano-composite using FIB–SEM and statistical correlation function, Compos Sci Technol, 80, 47, 10.1016/j.compscitech.2013.03.001

Echlin, 2015, The TriBeam system: femtosecond laser ablation in situ SEM, Mater Character, 100, 1, 10.1016/j.matchar.2014.10.023

Uchic, 2011, Automated serial sectioning methods for rapid collection of 3d microstructure data, JOM, 63, 25, 10.1007/s11837-011-0041-2

Miller, 2012, The future of atom probe tomography, Mater Today, 15, 158, 10.1016/S1369-7021(12)70069-X

Seol, 2016, A brief comment on atom probe tomography applications, Appl Microsc, 46, 127, 10.9729/AM.2016.46.3.127

Cairney, 2015, Mining information from atom probe data, Ultramicroscopy, 159, 324, 10.1016/j.ultramic.2015.05.006

Withers, 2007, X-ray nanotomography, Mater Today, 10, 26, 10.1016/S1369-7021(07)70305-X

Huang, 2013, X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials, Comput Mater Sci, 67, 63, 10.1016/j.commatsci.2012.08.032

Haboub, 2014, Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography, Rev Scient Instrum, 85, 083702, 10.1063/1.4892437

Krause, 2009, Determination of the fibre orientation in composites using the structure tensor and local X-ray transform, J Mater Sci, 45, 888, 10.1007/s10853-009-4016-4

Brault, 2013, In-situ analysis of laminated composite materials by x-ray micro-computed tomography and digital volume correlation, Exp Mech, 53, 1143, 10.1007/s11340-013-9730-9

Madra A, Breitkopf P, Rassineux A, Trochu F. Image-based model reconstruction and meshing of woven reinforcements in composites. Int J Numer Meth Eng.

Emerson, 2017, Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials, Compos Part A: Appl Sci Manuf, 97, 83, 10.1016/j.compositesa.2016.12.028

Möbus, 2007, Nanoscale tomography in materials science, Mater Today, 10, 18, 10.1016/S1369-7021(07)70304-8

Li, 2014, Development of advanced electron tomography in materials science based on TEM and STEM, Trans Nonferr Metals Soc China, 24, 3031, 10.1016/S1003-6326(14)63441-5

Kardjilov, 2011, Neutron imaging in materials science, Mater Today, 14, 248, 10.1016/S1369-7021(11)70139-0

Recur, 2011, Investigation on reconstruction methods applied to 3d terahertz computed tomography, Optics Exp, 19, 5105, 10.1364/OE.19.005105

Eberhardt, 2002, Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography, J Microsc, 206, 41, 10.1046/j.1365-2818.2002.01009.x

Liu, 2015, Random heterogeneous materials via texture synthesis, Comput Mater Sci, 99, 177, 10.1016/j.commatsci.2014.12.017

Sreeranganathan, 2010, Realistic micromechanical modeling of discontinuously reinforced composites, Comput Mater Sci, 49, 407, 10.1016/j.commatsci.2010.05.029

Coleri, 2012, Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures, Construct Build Mater, 30, 783, 10.1016/j.conbuildmat.2011.12.071

Bodla, 2010, Microtomography-based simulation of transport through open-cell metal foams, Numer Heat Transfer, Part A: Appl, 58, 527, 10.1080/10407782.2010.511987

Cundall, 1979, A discrete numerical model for granular assemblies, Géotechnique, 29, 47, 10.1680/geot.1979.29.1.47

Williams, 2003, Random packings of spheres and spherocylinders simulated by mechanical contraction, Phys Rev E, 67, 1, 10.1103/PhysRevE.67.051301

Visscher, 1972, Random packing of equal and unequal spheres in two and three dimensions, Nature, 239, 504, 10.1038/239504a0

Feng, 2003, Filling domains with disks: an advancing front approach, Int J Numer Meth Eng, 56, 699, 10.1002/nme.583

Gaiselmann, 2013, Stochastic 3d modeling of non-woven materials with wet-proofing agent, Int J Hydrogen Energy, 38, 8448, 10.1016/j.ijhydene.2013.04.144

Yamamoto, 1996, Dynamic simulation of microstructure and rheology of fiber suspensions, Polym Eng Sci, 36, 2396, 10.1002/pen.10638

Schmid, 2000, Simulations of fiber flocculation: effects of fiber properties and interfiber friction, J Rheol, 44, 781, 10.1122/1.551116

Folgar, 1984, Orientation behavior of fibers in concentrated suspensions, J Reinf Plast Compos, 3, 98, 10.1177/073168448400300201

Wang, 2008, An objective model for slow orientation kinetics in concentrated fiber suspensions: theory and rheological evidence, J Rheol, 52, 1179, 10.1122/1.2946437

Phelps, 2013, A model for fiber length attrition in injection-molded long-fiber composites, Compos Part A: Appl Sci Manuf, 51, 11, 10.1016/j.compositesa.2013.04.002

Tseng H-C, Chang R-Y, Hsu C-H. Numerical predictions of fiber orientation and mechanical properties for injection-molded long-carbon-fiber thermoplastic composites. Polym Compos, https://doi.org/10.1002/pc.24403.

Park, 2011, Modeling and simulation of fiber orientation in injection molding of polymer composites, Math Prob Eng, 2011, 1, 10.1155/2011/105637

Advani, 1987, The use of tensors to describe and predict fiber orientation in short fiber composites, J Rheol, 31, 751, 10.1122/1.549945

Müller, 2015, Homogenization of linear elastic properties of short-fiber reinforced composites – A comparison of mean field and voxel-based methods, Int J Solids Struct, 67–68, 56, 10.1016/j.ijsolstr.2015.02.030

Stoyan, 2002, Simulation and characterization of random systems of hard particles, Image Anal Stereol, 1, 41

Schneider, 2002

Eberly, 2006

Jaeger, 1992, Physics of the granular state, Science, 255, 1523, 10.1126/science.255.5051.1523

Eberly D. Distance between two line segments in 3D. Magic Software Inc.

Eberly D. Intersection of cylinders. Geometric Tools, Inc; 2000. p. 1–12.

Lin, 2002, On the distance between two ellipsoids, SIAM J Optim, 13, 298, 10.1137/S1052623401396510

Biermann D, Joliet R, Michelitsch T. Distance Computation between cylinders for the design of mold temperature control systems. Adv Comput Intell-Theory Pract, Series CI 258/08, SFB 531. Technical University of Dortmund; 2008.

Widom, 1966, Random sequential addition of hard spheres to a volume, J Chem Phys, 44, 3888, 10.1063/1.1726548

Feder, 1980, Random sequential adsorption, J Theoret Biol, 87, 237, 10.1016/0022-5193(80)90358-6

Cooper, 1988, Random-sequential-packing simulations in three dimensions for spheres, Phys Rev A, 38, 522, 10.1103/PhysRevA.38.522

Böhm, 2002, Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements, Comput Mater Sci, 25, 42, 10.1016/S0927-0256(02)00248-3

Tu, 2005, Numerical simulation of saturation behavior of physical properties in composites with randomly distributed second-phase, J Compos Mater, 39, 617, 10.1177/0021998305047263

Kari, 2007, Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites, Comput Mater Sci, 39, 198, 10.1016/j.commatsci.2006.02.024

Schneider, 2016, Automatic three-dimensional geometry and mesh generation of periodic representative volume elements for matrix-inclusion composites, Adv Eng Softw, 99, 177, 10.1016/j.advengsoft.2016.06.001

Bailakanavar, 2014, Automated modeling of random inclusion composites, Eng Comput, 30, 609, 10.1007/s00366-012-0310-x

Jodrey, 1985, Computer simulation of close random packing of equal spheres, Phys Rev A, 32, 2347, 10.1103/PhysRevA.32.2347

Pathan, 2017, A new algorithm to generate representative volume elements of composites with cylindrical or spherical fillers, Compos Part B: Eng, 110, 267, 10.1016/j.compositesb.2016.10.078

Balzani, 2014, Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations, Comput Mech, 54, 1269, 10.1007/s00466-014-1057-6

Alder, 1960, Studies in molecular dynamics. II. Behavior of a small number of elastic spheres, J Chem Phys, 33, 1439, 10.1063/1.1731425

Ghossein, 2013, Random generation of periodic hard ellipsoids based on molecular dynamics: a computationally-efficient algorithm, J Comput Phys, 253, 471, 10.1016/j.jcp.2013.07.004

Salnikov, 2015, On efficient and reliable stochastic generation of RVEs for analysis of composites within the framework of homogenization, Comput Mech, 55, 1, 10.1007/s00466-014-1086-1

Han, 2005, Sphere packing with a geometric based compression algorithm, Powder Technol, 155, 33, 10.1016/j.powtec.2005.04.055

Yu, 2008, An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains, Compos Sci Technol, 68, 2543, 10.1016/j.compscitech.2008.05.013

Gaiselmann, 2014, 3D microstructure modeling of compressed fiber-based materials, J Power Sour, 257, 52, 10.1016/j.jpowsour.2014.01.095

Harper, 2016, 3D geometric modelling of discontinuous fibre composites using a force-directed algorithm, J Compos Mater, 1

Islam, 2016, Microstructure modeling of random composites with cylindrical inclusions having high volume fraction and broad aspect ratio distribution, Comput Mater Sci, 125, 309, 10.1016/j.commatsci.2016.08.051

Sheng, 2016, An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles, Compos Sci Technol, 134, 26, 10.1016/j.compscitech.2016.08.009

Wang, 2016, Computational technology for analysis of 3d meso-structure effects on damage and failure of concrete, Int J Solids Struct, 80, 310, 10.1016/j.ijsolstr.2015.11.018

Catalanotti, 2016, On the generation of RVE-based models of composites reinforced with long fibres or spherical particles, Compos Struct, 138, 84, 10.1016/j.compstruct.2015.11.039

Mościński, 1989, The force-biased algorithm for the irregular close packing of equal hard spheres, Molec Simul, 3, 201, 10.1080/08927028908031373

Bargieł, 1991, C-language program for the irregular close packing of hard spheres, Comp Phys Commun, 64, 183, 10.1016/0010-4655(91)90060-X

Maggi, 2008, Nature of packs used in propellant modeling, Phys Rev E, 77, 046107, 10.1103/PhysRevE.77.046107

Benabbou, 2009, Geometrical modeling of granular structures in two and three dimensions. Application to nanostructures, Int J Numer Meth Eng, 80, 425, 10.1002/nme.2644

Benabbou, 2010, Numerical modeling of nanostructured materials, Finite Elem Anal Des, 46, 165, 10.1016/j.finel.2009.06.030

Fritzen, 2011, Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites, Int J Solids Struct, 48, 706, 10.1016/j.ijsolstr.2010.11.010

Schüler, 2016, Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans, Construct Build Mater, 109, 96, 10.1016/j.conbuildmat.2016.02.012

Klusemann, 2010, Homogenization methods for multi-phase elastic composites: comparisons and benchmarks, Tech Mech, 30, 374

Yi, 2015, Modeling and simulation of mechanical properties of nano particle modified polyamide 6, J Mater Sci Chem Eng, 3, 80

Ogierman, 2016, A study on fiber orientation influence on the mechanical response of a short fiber composite structure, Acta Mech, 227, 173, 10.1007/s00707-015-1417-0

Soni, 2014, Modelling matrix damage and fibre matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M2RVE), Int J Solids Struct, 51, 449, 10.1016/j.ijsolstr.2013.10.018

Scheider, 2015, Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure, Acta Biomater, 15, 244, 10.1016/j.actbio.2014.11.036

Barthelat, 2007, On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure, J Mech Phys Solids, 55, 306, 10.1016/j.jmps.2006.07.007

Spaeth A. The black gold of stade, Lufthansa Magazin 01/2017; 2017.

Wongsto, 2005, Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section, Compos Part A: Appl Sci Manuf, 36, 1246, 10.1016/j.compositesa.2005.01.010

Dastgerdi, 2013, The effect of nanotubes waviness on mechanical properties of CNT/SMP composites, Compos Sci Technol, 86, 164, 10.1016/j.compscitech.2013.07.012

Li, 1999, On the unit cell for micromechanical analysis of fibre-reinforced composites, Proc R Soc A: Math, Phys Eng Sci, 455, 815, 10.1098/rspa.1999.0336

Matsuda, 2007, Three-dimensional microscopic interlaminar analysis of cross-ply laminates based on a homogenization theory, Int J Solids Struct, 44, 8274, 10.1016/j.ijsolstr.2007.06.010

Zeman, 2007, From random microstructures to representative volume elements, Model Simul Mater Sci Eng, 15, S325, 10.1088/0965-0393/15/4/S01

Gusev, 2000, Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite, Compos Sci Technol, 60, 535, 10.1016/S0266-3538(99)00152-9

Feng, 2014, Carbon nanofibers and their composites: a review of synthesizing, properties and applications, Materials, 7, 3919, 10.3390/ma7053919

Stapleton, 2016, Representative volume element for parallel fiber bundles: Model and size convergence, Compos Part A: Appl Sci Manuf, 87, 170, 10.1016/j.compositesa.2016.04.018

Melro, 2008, Generation of random distribution of fibres in long-fibre reinforced composites, Compos Sci Technol, 68, 2092, 10.1016/j.compscitech.2008.03.013

Swolfs, 2013, Stress concentrations in hybrid unidirectional fibre-reinforced composites with random fibre packings, Compos Sci Technol, 85, 10, 10.1016/j.compscitech.2013.05.013

Romanov, 2013, Statistical analysis of real and simulated fibre arrangements in unidirectional composites, Compos Sci Technol, 87, 126, 10.1016/j.compscitech.2013.07.030

Yang, 2013, A new method for generating random fibre distributions for fibre reinforced composites, Compos Sci Technol, 76, 14, 10.1016/j.compscitech.2012.12.001

Vaughan, 2010, A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials, Compos Sci Technol, 70, 291, 10.1016/j.compscitech.2009.10.020

Wang, 2016, Micromechanical modeling of fiber-reinforced composites with statistically equivalent random fiber distribution, Materials, 9, 624, 10.3390/ma9080624

Lu, 2014, 3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios, Comput Mater Sci, 90, 123, 10.1016/j.commatsci.2014.04.007

Monteiro, 2009, Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly, JOM, 61, 17, 10.1007/s11837-009-0004-z

Mallick, 2007

Fisher, 2003, Fiber waviness in nanotube-reinforced polymer composites – I: modulus predictions using effective nanotube properties, Compos Sci Technol, 63, 1689, 10.1016/S0266-3538(03)00069-1

Nam, 2014, Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites, Compos Part A: Appl Sci Manuf, 64, 194, 10.1016/j.compositesa.2014.05.013

Paunikar, 2014, Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites, Comput Mater Sci, 95, 21, 10.1016/j.commatsci.2014.06.034

Garnich, 2004, Finite element micromechanics for stiffness and strength of wavy fiber composites, J Compos Mater, 38, 273, 10.1177/0021998304039270

Shi, 2004, Critical evaluation of the stiffening effect of carbon nanotubes in composites, Key Eng Mater, 261, 1487, 10.4028/www.scientific.net/KEM.261-263.1487

Shady, 2010, Effect of nanotube geometry on the elastic properties of nanocomposites, Compos Sci Technol, 70, 1476, 10.1016/j.compscitech.2010.04.027

Stein, 2015, Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology, Nanoscale, 7, 19426, 10.1039/C5NR06436H

Recchia, 2014, Fiberwalk: a random walk approach to fiber representative volume element creation, Acta Mech, 225, 1301, 10.1007/s00707-013-1069-x

Herasati, 2014, A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites, Compos Sci Technol, 100, 136, 10.1016/j.compscitech.2014.06.004

Drücker, 2017, Influence of the microstructure on effective mechanical properties of carbon nanotube composites, Coupled Syst Mech, 6, 1, 10.12989/csm.2017.6.1.001

Faessel, 2005, 3D modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis, Compos Sci Technol, 65, 1931, 10.1016/j.compscitech.2004.12.038

Altendorf, 2011, Random-walk-based stochastic modeling of three-dimensional fiber systems, Phys Rev E, 83, 041804, 10.1103/PhysRevE.83.041804

Chapelle L, Lévesque M, Brøndsted P, Foldschack MR, Kusano Y. Generation of non-overlapping fiber architecture. In: Proceedings of the 20th international conference on composite materials; 2015.

Rouquerol, 2009, Recommendations for the characterization of porous solids (technical report), Pure Appl Chem, 66, 1739, 10.1351/pac199466081739

Ansar, 2011, Modeling strategies of 3d woven composites: a review, Compos Struct, 93, 1947, 10.1016/j.compstruct.2011.03.010

Fang, 2011, A review of numerical modeling of three-dimensional braided textile composites, J Compos Mater, 45, 2415, 10.1177/0021998311401093

Barbero, 2005, Micromechanics of fabric reinforced composites with periodic microstructure, Int J Solids Struct, 42, 2489, 10.1016/j.ijsolstr.2004.09.034

Mahadik, 2010, Characterisation of 3d woven composite internal architecture and effect of compaction, Compos Part A: Appl Sci Manuf, 41, 872, 10.1016/j.compositesa.2010.02.019

Bale, 2012, Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography, J Am Ceram Soc, 95, 392, 10.1111/j.1551-2916.2011.04802.x

Jacques, 2014, Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites, Compos Sci Technol, 92, 41, 10.1016/j.compscitech.2013.11.023

Straumit, 2015, Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data, Compos Part A: Appl Sci Manuf, 69, 150, 10.1016/j.compositesa.2014.11.016

Naouar, 2015, 3D composite reinforcement meso FE analyses based on X-ray computed tomography, Compos Struct, 132, 1094, 10.1016/j.compstruct.2015.07.005

Barbero, 2006, Finite element modeling of plain weave fabrics from photomicrograph measurements, Compos Struct, 73, 41, 10.1016/j.compstruct.2005.01.030

Sevenois, 2016, Avoiding interpenetrations and the importance of nesting in analytic geometry construction for representative unit cells of woven composite laminates, Compos Sci Technol, 136, 119, 10.1016/j.compscitech.2016.10.010

Said, 2016, Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial voronoi tessellation, J Mech Phys Solids, 88, 50, 10.1016/j.jmps.2015.12.024

Mahadik, 2010, Finite element modelling of tow geometry in 3d woven fabrics, Compos Part A: Appl Sci Manuf, 41, 1192, 10.1016/j.compositesa.2010.05.001

El Said, 2014, Kinematic modelling of 3d woven fabric deformation for structural scale features, Compos Part A: Appl Sci Manuf, 57, 95, 10.1016/j.compositesa.2013.11.006

Green, 2014, Numerical modelling of 3D woven preform deformations, Compos Struct, 108, 747, 10.1016/j.compstruct.2013.10.015

Green, 2014, Mechanical modelling of 3D woven composites considering realistic unit cell geometry, Compos Struct, 118, 284, 10.1016/j.compstruct.2014.07.005

Joglekar, 2017, Modeling of 3d woven composites using the digital element approach for accurate prediction of kinking under compressive loads, Compos Struct, 160, 547, 10.1016/j.compstruct.2016.10.070

Badel, 2008, Large deformation analysis of fibrous materials using rate constitutive equations, Comp Struct, 86, 1164, 10.1016/j.compstruc.2008.01.009

Khan, 2010, Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark, J Mater Process Technol, 210, 378, 10.1016/j.jmatprotec.2009.09.027

Stig, 2012, Spatial modelling of 3D-woven textiles, Compos Struct, 94, 1495, 10.1016/j.compstruct.2011.12.003

Grail, 2013, Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements, Compos Part A: Appl Sci Manuf, 55, 143, 10.1016/j.compositesa.2013.09.001

Daelemans, 2016, Finite element simulation of the woven geometry and mechanical behaviour of a 3d woven dry fabric under tensile and shear loading using the digital element method, Compos Sci Technol, 137, 177, 10.1016/j.compscitech.2016.11.003

Zhou, 2004, Multi-chain digital element analysis in textile mechanics, Compos Sci Technol, 64, 239, 10.1016/S0266-3538(03)00258-6

Isart, 2015, Internal geometric modelling of 3d woven composites: a comparison between different approaches, Compos Struct, 132, 1219, 10.1016/j.compstruct.2015.07.007

Isart, 2015, Geometric model for 3d through-thickness orthogonal interlock composites, Compos Struct, 119, 787, 10.1016/j.compstruct.2014.09.044

Kuhn, 1999, Modeling of plain weave fabric composite geometry, J Compos Mater, 33, 188, 10.1177/002199839903300301

Lomov, 2001, Textile composites: modelling strategies, Compos Part A: Appl Sci Manuf, 32, 1379, 10.1016/S1359-835X(01)00038-0

Dong, 2007, Finite element analysis of the tensile properties of 2.5 d braided composites, Mater Sci Eng: A, 457, 199, 10.1016/j.msea.2006.12.032

Adumitroaie, 2011, Beyond plain weave fabrics–I. Geometrical model, Compos Struct, 93, 1424, 10.1016/j.compstruct.2010.11.014

Bednarcyk, 2015, Meso-and micro-scale modeling of damage in plain weave composites, Compos Struct, 121, 258, 10.1016/j.compstruct.2014.11.013

Kowalczyk, 2015, Enhanced geometric model for numerical microstructure analysis of plain-weave fabric-reinforced composite, Adv Compos Mater, 24, 411, 10.1080/09243046.2014.898439

Xiao, 2015, Geometrical modeling of honeycomb woven fabric architecture, Text Res J, 85, 1651, 10.1177/0040517514548754

Jendrysik N, Schneider K, Bargmann S. Automatic generation and discretization of fully periodic unit cells of plain woven composites, J Compos Mater, 2018 [accepted for publication].

Hivet, 2005, Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis, Finite Elem Anal Des, 42, 25, 10.1016/j.finel.2005.05.001

Lomov, 2007, Meso-FE modelling of textile composites: road map, data flow and algorithms, Compos Sci Technol, 67, 1870, 10.1016/j.compscitech.2006.10.017

Lin, 2008, Finite element modelling of fabric compression, Model Simul Mater Sci Eng, 16, 035010, 10.1088/0965-0393/16/3/035010

Li, 2011, Finite element modeling of mechanical properties of 3d five-directional rectangular braided composites, Compos Part B: Eng, 42, 1373, 10.1016/j.compositesb.2011.05.042

Fagiano, 2014, Computational geometrical and mechanical modeling of woven ceramic composites at the mesoscale, Compos Struct, 112, 146, 10.1016/j.compstruct.2014.01.045

Sonon, 2013, A level-set based representative volume element generator and XFEM simulations for textile and 3D-reinforced composites, Materials, 6, 5568, 10.3390/ma6125568

Wendling, 2014, Consistent geometrical modelling of interlock fabrics, Finite Elem Anal Des, 90, 93, 10.1016/j.finel.2014.05.010

Tabatabaei, 2015, Eliminating the volume redundancy of embedded elements and yarn interpenetrations in meso-finite element modelling of textile composites, Comp Struct, 152, 142, 10.1016/j.compstruc.2015.02.014

Ji, 2014, Multi-scale simulation and finite-element-assisted computation of elastic properties of braided textile reinforced composites, J Compos Mater, 48, 931, 10.1177/0021998313480198

Wang, 2016, Strength prediction for bi-axial braided composites by a multi-scale modelling approach, J Mater Sci, 51, 6002, 10.1007/s10853-016-9901-z

Brown, 2003, A system for the automatic generation of solid models of woven structures, Compos Part A: Appl Sci Manuf, 34, 511, 10.1016/S1359-835X(03)00083-6

Doitrand, 2015, Comparison between voxel and consistent meso-scale models of woven composites, Compos Part A: Appl Sci Manuf, 73, 143, 10.1016/j.compositesa.2015.02.022

Hewitt, 1996, Modelling, evaluation and manufacture of woven composite materials, Compos Part A: Appl Sci Manuf, 27, 295, 10.1016/1359-835X(95)00041-Y

Stier, 2015, Comparing experimental results to a numerical meso-scale approach for woven fiber reinforced plastics, Compos Struct, 122, 553, 10.1016/j.compstruct.2014.12.015

Zhang, 2013, Finite element analysis of 3d braided composites based on three unit-cells models, Compos Struct, 98, 130, 10.1016/j.compstruct.2012.11.003

Tal, 2016, Generating a statistically equivalent representative volume element with discrete defects, Compos Struct, 153, 791, 10.1016/j.compstruct.2016.06.077

Lomov, 2000, Textile geometry preprocessor for meso-mechanical models of woven composites, Compos Sci Technol, 60, 2083, 10.1016/S0266-3538(00)00121-4

Verpoest, 2005, Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis, Compos Sci Technol, 65, 2563, 10.1016/j.compscitech.2005.05.031

Lomov, 2011, Modelling the geometry of textile reinforcements for composites: WiseTex, 200

Ha-Minh, 2016, Numerical analysis of the ballistic performance of textile fabrics, 457

Lin, 2012, Automated geometric modelling of textile structures, Text Res J, 82, 1689, 10.1177/0040517511418562

Zeng, 2014, Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties, Compos Part A: Appl Sci Manuf, 56, 150, 10.1016/j.compositesa.2013.10.004

Russell, 2007

Hoferer, 2006, Highly resolved determination of structure and particle deposition in fibrous filters by MRI, Chem Eng Technol, 29, 816, 10.1002/ceat.200600047

Hosseini, 2010, Modeling permeability of 3-d nanofiber media in slip flow regime, Chem Eng Sci, 65, 2249, 10.1016/j.ces.2009.12.002

Shah, 2016, Three-dimensional imaging of porous media using confocal laser scanning microscopy, J Microsc, 265, 261, 10.1111/jmi.12496

Sambaer, 2011, 3d modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process, Chem Eng Sci, 66, 613, 10.1016/j.ces.2010.10.035

Jaganathan, 2008, A realistic approach for modeling permeability of fibrous media: 3-d imaging coupled with CFD simulation, Chem Eng Sci, 63, 244, 10.1016/j.ces.2007.09.020

Manickam, 2012, Characterization of polymeric nonwovens using porosimetry, porometry and X-ray computed tomography, J Memb Sci, 407–408, 108, 10.1016/j.memsci.2012.03.022

Soltani, 2015, 3D fiber orientation characterization of nonwoven fabrics using X-ray micro-computed tomography, World J Text Eng Technol, 1, 41

Tausif, 2014, Three-dimensional fiber segment orientation distribution using X-ray microtomography, Microsc Microanal, 20, 1294, 10.1017/S1431927614000695

Klar, 2012, A 3d model for fiber lay-down in nonwown production processes, Math Models Meth Appl Sci, 22, 1250020, 10.1142/S0218202512500200

Gramsch, 2016, Aerodynamic web forming: process simulation and material properties, J Math Indust, 6, 13, 10.1186/s13362-016-0034-4

Wang, 2006, A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media, Chem Eng Sci, 61, 4871, 10.1016/j.ces.2006.03.039

Mueller, 2004, Numerical modeling of thermobonded nonwovens, Int Nonwovens J, 13, 56

Demirci, 2012, Numerical modelling of thermally bonded nonwovens: continuous and discontinuous approaches, Solid State Phenom, 188, 164, 10.4028/www.scientific.net/SSP.188.164

Niskanen, 1994, Planar random networks with flexible fibers, Phys Rev Lett, 73, 3475, 10.1103/PhysRevLett.73.3475

Torquato, 1991, Random heterogeneous media: microstructure and improved bounds on effective properties, Appl Mech Rev, 44, 37, 10.1115/1.3119494

Wilmers, 2017, Interface elasticity effects in polymer-filled nanoporous metals, J Mech Phys Solids, 99, 163, 10.1016/j.jmps.2016.11.011

Alkemper, 2001, Quantitative serial sectioning analysis, J Microsc, 201, 388, 10.1046/j.1365-2818.2001.00832.x

Maire, 2014, Structural characterization of solid foams, Comp Rend Phys, 15, 674, 10.1016/j.crhy.2014.09.001

Maire, 2003, X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Compos Sci Technol, 63, 2431, 10.1016/S0266-3538(03)00276-8

Youssef, 2005, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Mater, 53, 719, 10.1016/j.actamat.2004.10.024

McDonald, 2006, Characterization of the three-dimensional structure of a metallic foam during compressive deformation, J Microsc, 223, 150, 10.1111/j.1365-2818.2006.01607.x

Mayer, 2007, TEM sample preparation and FIB-induced damage, MRS Bull, 32, 400, 10.1557/mrs2007.63

Sun, 2008, A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking, Scripta Mater, 58, 727, 10.1016/j.scriptamat.2007.12.008

Körner, 2005, Lattice Boltzmann model for free surface flow for modeling foaming, J Statist Phys, 121, 179, 10.1007/s10955-005-8879-8

Seol, 2003, Computer simulation of spinodal decomposition in constrained films, Acta Mater, 51, 5173, 10.1016/S1359-6454(03)00378-1

Farkas, 2013, Mechanical response of nanoporous gold, Acta Mater, 61, 3249, 10.1016/j.actamat.2013.02.013

Saane, 2014, Multiscale modeling of charge-induced deformation of nanoporous gold structures, J Mech Phys Solids, 66, 1, 10.1016/j.jmps.2014.01.007

Fujita, 2012, Atomic origins of the high catalytic activity of nanoporous gold, Nat Mater, 11, 775, 10.1038/nmat3391

Xia, 2015, The role of computer simulation in nanoporous metals a review, Materials, 8, 5060, 10.3390/ma8085060

Erlebacher, 2012, Geometric characterization of nanoporous metals, Acta Mater, 60, 6164, 10.1016/j.actamat.2012.07.059

Erlebacher, 2004, An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior, J Electrochem Soc, 151, C614, 10.1149/1.1784820

Zinchenko, 2013, Nanoporous gold formation by dealloying: a metropolis Monte Carlo study, Comp Phys Commun, 184, 1562, 10.1016/j.cpc.2013.02.004

Krekeler, 2017, Silver-rich clusters in nanoporous gold, Mater Res Lett, 5, 1, 10.1080/21663831.2016.1276485

Oono, 1988, Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling, Phys Rev A, 38, 434, 10.1103/PhysRevA.38.434

Puri, 1988, Study of phase-separation dynamics by use of cell dynamical systems. II. two-dimensional demonstrations, Phys Rev A, 38, 1542, 10.1103/PhysRevA.38.1542

do Rosário, 2017, The stiffness and strength of metamaterials based on the inverse opal architecture, Extreme Mech Lett, 12, 86, 10.1016/j.eml.2016.07.006

Silberschmidt, 2015

Lakes, 1987, Foam structures with a negative Poisson’s ratio, Science, 235, 1038, 10.1126/science.235.4792.1038

Babaee, 2013, 3D soft metamaterials with negative Poisson’s ratio, Adv Mater, 25, 5044, 10.1002/adma.201301986

Shim, 2012, Buckling-induced encapsulation of structured elastic shells under pressure, Proc Nat Acad Sci, 109, 5978, 10.1073/pnas.1115674109

Shen, 2014, Simple cubic three-dimensional auxetic metamaterials, Phys Status Solidi (b), 251, 1515, 10.1002/pssb.201451304

Ren, 2015, Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties, Smart Mater Struct, 24, 095016, 10.1088/0964-1726/24/9/095016

Bückmann, 2014, On three-dimensional dilational elastic metamaterials, New J Phys, 16, 033032, 10.1088/1367-2630/16/3/033032

Milton, 2013, Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots, J Mech Phys Solids, 61, 1543, 10.1016/j.jmps.2012.08.011

Fu, 2016, Experimental and numerical analysis of a novel three-dimensional auxetic metamaterial, Phys Status Solidi (b), 253, 1565, 10.1002/pssb.201552769

Lim, 2016, A 3D auxetic material based on intersecting double arrowheads, Phys Status Solidi (b), 253, 1252, 10.1002/pssb.201600015

Cabras, 2016, A class of auxetic three-dimensional lattices, J Mech Phys Solids, 91, 56, 10.1016/j.jmps.2016.02.010

Thomson, 1887, On the division of space with minimum partitional area, Acta Math, 11, 121, 10.1007/BF02612322

Weaire, 1994, A counter-example to Kelvin’s conjecture on minimal surfaces, Philos Magaz Lett, 69, 107, 10.1080/09500839408241577

Gibson, 1982, The mechanics of three-dimensional cellular materials, Proc R Soc Lond A: Math, Phys Eng Sci, 382, 43, 10.1098/rspa.1982.0088

Pia, 2013, On the elastic deformation behavior of nanoporous metal foams, Scripta Mater, 69, 781, 10.1016/j.scriptamat.2013.08.027

Liu, 2013, A relationship between the geometrical structure of a nanoporous metal foam and its modulus, Acta Mater, 61, 2390, 10.1016/j.actamat.2013.01.011

Soyarslan, 2017, Effect of surface elasticity on the elastic response of nanoporous gold, J Nanomech Micromech, 7, 04017013, 10.1061/(ASCE)NM.2153-5477.0000126

Huber, 2014, Scaling laws of nanoporous metals under uniaxial compression, Acta Mater, 67, 252, 10.1016/j.actamat.2013.12.003

Roschning, 2016, Scaling laws of nanoporous gold under uniaxial compression: effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength, J Mech Phys Solids, 92, 55, 10.1016/j.jmps.2016.02.018

Stavans, 1993, The evolution of cellular structures, Rep Prog Phys, 56, 733, 10.1088/0034-4885/56/6/002

Glazier, 1992, The kinetics of cellular patterns, J Phys: Cond Matter, 4, 1867

Roberts, 2001, Elastic moduli of model random three-dimensional closed-cell cellular solids, Acta Mater, 49, 189, 10.1016/S1359-6454(00)00314-1

Mangipudi, 2011, Multiscale modelling of damage and failure in two-dimensional metallic foams, J Mech Phys Solids, 59, 1437, 10.1016/j.jmps.2011.02.008

Beckmann, 2012, Assessment of material uncertainties in solid foams based on local homogenization procedures, Int J Solids Struct, 49, 2807, 10.1016/j.ijsolstr.2012.02.033

Redenbach, 2012, Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes, Int J Eng Sci, 50, 70, 10.1016/j.ijengsci.2011.09.002

Sonon, 2015, An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets, Comput Mech, 56, 221, 10.1007/s00466-015-1168-8

Berk, 1991, Scattering properties of the leveled-wave model of random morphologies, Phys Rev A, 44, 5069, 10.1103/PhysRevA.44.5069

Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: part I -yield criteria and flow rules for porous ductile media, J Eng Mater Technol, 99, 2, 10.1115/1.3443401

Tvergaard, 1981, Influence of voids on shear band instabilities under plane strain conditions, Int J Fract, 17, 389, 10.1007/BF00036191

Needleman, 1987, A continuum model for void nucleation by inclusion debonding, J Appl Mech, 54, 525, 10.1115/1.3173064

Sopu, 2016, Structure-property relationships in nanoporous metallic glasses, Acta Mater, 106, 199, 10.1016/j.actamat.2015.12.026

Javid, 2016, Architected materials with ultra-low porosity for vibration control, Adv Mater, 28, 5943, 10.1002/adma.201600052

Weck, 2008, Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials, Acta Mater, 56, 2919, 10.1016/j.actamat.2008.02.027

Millett, 2011, Application of phase-field modeling to irradiation effects in materials, Curr Opin Solid State Mater Sci, 15, 125, 10.1016/j.cossms.2010.10.002

Bacon, 2000, The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations, J Nucl Mater, 276, 1, 10.1016/S0022-3115(99)00165-8

Millett, 2009, Void nucleation and growth in irradiated polycrystalline metals: a phase-field model, Model Simul Mater Sci Eng, 17, 064003, 10.1088/0965-0393/17/6/064003

Hu S, H Jr CH. Phase-field modeling of void lattice formation under irradiation. J Nucl Mater 2009;394 (2-3):155–9.

Soneda, 2003, Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation, J Nucl Mater, 323, 169, 10.1016/j.jnucmat.2003.08.021

Domain, 2004, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J Nucl Mater, 335, 121, 10.1016/j.jnucmat.2004.07.037

Guessasma, 2009, Generation of anisotropic cellular solid model and related elasticity parameters: Finite element simulation, J Cell Plast, 45, 119, 10.1177/0021955X08099928

Paterson, 2013

Hamilton, 1976, Variations of density and porosity with depth in deep-sea sediments, J Sediment Res, 46, 280

Thevanayagam, 2002, Liquefaction in silty soils – screening and remediation issues, Soil Dynam Earthq Eng, 22, 1035, 10.1016/S0267-7261(02)00128-8

Bentz D, Stutzman P. SEM analysis and computer modelling of hydration of Portland cement particles, ASTM STP 1215. In: DeHayes S, Stark D, editors. Petrography of cementitous materials; 1993. p. 60–73.

Isola, 2008

Zhao, 2006, Three-dimensional discrete element simulation for granular materials, Eng Comput, 23, 749, 10.1108/02644400610689884

Winkler, 2014, Granular packing generation using DEM - modified force-biased-algorithm, Scour Eros, 345, 10.1201/b17703-43

González-Montellano, 2011, Discrete element modelling of grain flow in a planar silo: influence of simulation parameters, Granul Matter, 13, 149, 10.1007/s10035-010-0204-9

He, 1999, Computer simulation of random packing of unequal particles, Phys Rev E, 60, 7098, 10.1103/PhysRevE.60.7098

Lee, 2009, A packing algorithm for three-dimensional convex particles, Granul Matter, 11, 307, 10.1007/s10035-009-0133-7

Stroeven, 2004, Numerical determination of representative volumes for granular materials, Comp Meth Appl Mech Eng, 193, 3221, 10.1016/j.cma.2003.09.023

Atwater, 2016, Synthesis, characterization and quantitative analysis of porous metal microstructures: application to microporous copper produced by solid state foaming, AIMS Mater Sci, 3, 573, 10.3934/matersci.2016.2.573

Liberato, 2016, Polycaprolactone fibers with self-assembled peptide micro/nanotubes: a practical route towards enhanced mechanical strength and drug delivery applications, J Mater Chem B, 4, 1405, 10.1039/C5TB02240A

Kerschnitzki, 2013, Architecture of the osteo-cyte network correlates with bone material quality, J Bone Min Res, 28, 1837, 10.1002/jbmr.1927

Soyarslan C, Argeso H, Bargmann S. Skeletonization-based beam-FE models for stochastic bicontinuous materials: Application to simulations of nanoporous gold; 2018 [submitted for publication].

Bostanabad, 2018, Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Prog Mater Sci, 95, 1, 10.1016/j.pmatsci.2018.01.005