Tạo ra và ứng dụng dòng chảy dao động dưới kilohertz trong các kênh vi mô

Microfluidics and Nanofluidics - Tập 24 - Trang 1-10 - 2020
Giridar Vishwanathan1, Gabriel Juarez1
1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA

Tóm tắt

Chúng tôi trình bày một kỹ thuật thực nghiệm dễ tiếp cận và linh hoạt, tạo ra dòng chảy dao động hình sin dưới kilohertz trong các kênh vi mô. Phương pháp này liên quan đến việc kết nối trực tiếp ống dẫn vi lưu với màng loa, cho phép điều khiển độc lập tần số và biên độ dao động. Dòng chảy dao động được tạo ra với tần số dao động từ 10 đến 1000 Hz và biên độ dao động từ 10 đến 600 μm. Phân tích quang phổ Fourier của các quỹ đạo hạt, thu được bằng phương pháp đo tốc độ theo dõi hạt, đã được sử dụng để đánh giá sự dịch chuyển dao động trong các kênh vi mô và cho thấy nó chính xác đại diện cho chuyển động điều hòa đơn giản được xác định bởi loa. Các biểu đồ dòng chảy dao động trong các kênh vi mô có mặt cắt vuông và chữ nhật đã được đặc trưng như một hàm của tần số dao động, hay số Womersley, và so sánh với các tiêu chuẩn lý thuyết, chẳng hạn như dòng Stokes và bài toán thứ hai của Stokes. Để làm nổi bật tính linh hoạt và hiệu quả của phương pháp thực nghiệm, các ứng dụng nguyên mẫu đã được thể hiện với việc sử dụng dòng chảy pHatar trong các thiết bị vi lưu, chẳng hạn như tập trung quán tính và tăng cường trộn tại các số Reynolds thấp.

Từ khóa

#dòng chảy dao động; kênh vi mô; loa; phân tích quang phổ Fourier; số Womersley; dòng Stokes

Tài liệu tham khảo

Abolhasani M, Jensen KF (2016) Oscillatory multiphase flow strategy for chemistry and biology. Lab Chip 16:2775 Ahmed D, Mao X, Shi J, Juluri BK, Huang TJ (2009) A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9:2738 Alizadehgiashi M, Khabibullin A, Li Y, Prince E, Abolhasani M, Kumacheva E (2009) Shear-induced alignment of anisotropic nanoparticles in a single-droplet oscillatory microfluidic platform. Lab Chip 9:2738 Amini H, Sollier E, Weaver WM, Carlo DD (2012) Intrinsic particle-induced lateral transport in microchannels. Proc Natl Acad Sci 109:11593 Bachman H, Fu P, Huang Z, Tian J, Embry-Seckler J, Rufo Z, Xie JH, Hartman S, Zhao S, Yang JN, Huang TJ (2019) Open source acoustofluidics. Lab Chip 19:2404 Basilio PA, Torres Rojas AM, Corvera Poiré E, Olguín LF (2019) Stream of droplets as an actuator for oscillatory flows in microfluidics. Microfluidics Nanofluidics 23:64 Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12:187 Cai G, Xue L, Zhang H, Lin J (2017) A review on micromixers. Micromachines 8:274 Dang VB, Kim S-J (2017) Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets. Lab Chip 17:286 Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038 Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892 Dincau B, Dressaire E, Sauret A (2019) Pulsatile fow in microfluidic systems. Small 16:1904032 Du D, Furukawa KS, Ushida T (2009) 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng 102:1670 Fischer PF, Leaf GK, Restrepo JM (2005) Influence of wall proximity on the lift and drag of a particle in an oscillatory flow. J Fluids Eng 127:583 Frommelt T, Kostur M, Wenzel-Schäfer M, Talkner P, Hänggi P, Wixforth A (2008) Microfluidic Mixing via Acoustically Driven Chaotic Advection. Phys Rev Lett 100:034502 Groisman A, Enzelberger M, Quake SR (2003) Microfluidic memory and control devices. Science 300:955 Hessel V, Löwe H, Schönfeld F (2005) Micromixers: a review on passive and active mixing principles. Chem Eng Sci 60:2479 Hur SC, Tse HTK, Carlo DD (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274 Jinquan Nie YZ, Peng N (2015) Multichannel oscillatory-flow PCR micro-fluidic chip with controllable temperature gradient. Microsyst Technol 21:41 Jo K, Chen Y-L, de Pablo JJ, Schwartz DC (2009) Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows. Lab Chip 9:2348 Kim SJ, Yokokawa R, Takayama S (2013) Microfluidic oscillators with widely tunable periods. Lab Chip 13:1644 Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973 Landau LD, Lifshits EM (1959) Fluid mechanics. In: Lifshits EM (ed) Course of theoretical physics, vol 6, translated by J.B. Sykes and W.H. Reid. Pergamon Press, London, pp 83–85 Lee CY, Chang CL, Wang YN, Fu LM (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263 Lee CY, Wang WT, Chang CL, Fu LM (2016) Passive mixers in microfluidic systems: a review. Chem Eng J 288:146 Lee J, Mena SE, Burns MA (2019) Micro-particle operations using asymmetric traps. Sci Rep 9:1278 Leslie DC, Easley CJ, Seker E, Karlinsey JM, Utz M, Begley MR, Landers JP (2009) Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nat Phys 5:231 Lestari G, Salari A, Abolhasani M, Kumacheva E (2016) A microfluidic study of liquid-liquid extraction mediated by carbon dioxide. Lab Chip 16:2710 Lieu VH, House TA, Schwartz DT (2012) Hydrodynamic Tweezers: impact of design geometry on flow and microparticle trapping. Anal Chem 84:1963 Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190 Liu RH, Yang J, Pindera MZ, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2:151 Lutz BR, Chen J, Schwartz DT (2006) Characterizing homogeneous chemistry using well-mixed microeddies. Anal Chem 78:1606 Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423:153 Martel JM, Toner M (2014) Inertial focusing in microfluidics. Annu Rev Biomed Eng 16:371 Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Sys 12:325 Mosadegh B, Kuo CH, Tung YC, Torisawa YS, Bersano-Begey T, Tavana H, Takayama S (2010) Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nat Phys 6:433 Mutlu BR, Edd JF, Toner M (2018) Oscillatory inertial focusing in infinite microchannels. Proc Natl Acad Sci 115:7682 Nguyen NT, Wu Z (2005) Micromixers: a review. J Micromech Microeng 15:R1 Nivedita N, Papautsky I (2013) Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7:054101 O’Brien V (1975) Pulsatile fully developed flow in rectangular channels. J Frankl Inst 300:225 Oakey J, Applegate RW, Arellano E, Carlo DD, Graves SW, Toner M (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal Chem 82:3862 Ober TJ, Foresti D, Lewis JA (2015) Active mixing of complex fluids at the microscale. Proc Natl Acad Sci 112:12293 Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Philos Trans R Soc A 362:923 Phelan FR, Hughes NR, Pathak JA (2008) Chaotic mixing in microfluidic devices driven by oscillatory cross flow. Phys Fluids 20:023101 Phillips RH, Jain R, Browning Y, Shah R, Kauffman P, Dinh D, Lutz BR (2016) Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices. Lab Chip 16:3260 Qu J, Wu H, Cheng P, Wang Q, Sun Q (2017) Recent advances in MEMS-based micro heat pipes. Int J Heat Mass Transfer 110:294 Rallabandi B, Wang C, Hilgenfeldt S (2017) Analysis of optimal mixing in open-flow mixers with time-modulated vortex arrays. Phys Rev Fluids 2:064501 Riley N (2001) Steady streaming. Annu Rev Fluid Mech 33:43 Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:3710 Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901 Shmilovitz D (2005) On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Trans Power Deliv 20:526 Stoecklein D, Di Carlo D (2019) Nonlinear microfluidics. Anal Chem 91:296 Thameem R, Rallabandi B, Hilgenfeldt S (2016) Particle migration and sorting in microbubble streaming flows. Biomicrofluidics 10:014124 Thomas C, Bassom AP, Blennerhassett PJ, Davies C (2011) The linear stability of oscillatory Poiseuille flow in channels and pipes. Proc R Soc A Math Phys Eng Sci 467:2643 Vázquez-Vergara P, Rojas AMT, Guevara-Pantoja PE, Poiré EC, Caballero-Robledo GA (2017) Microfluidic flow spectrometer. J Micromech Microeng 27:077001 Vishwanathan G, Juarez G (2019a) Steady streaming viscometry of Newtonian liquids. Phys Fluids 31:041701 Vishwanathan G, Juarez G (2019b) Steady streaming flows in viscoelastic liquids. J Non Newton Fluid Mech 271:104143 Wang CY (1989) Exact solutions of the unsteady Navier-Stokes equations. Appl Mech Rev 42:269 Ward K, Fan ZH (2015) Mixing in microfluidic devices and enhancement methods. J Micromech Microeng 25:094001 Wu L, Guan G, Hou HW, Bhagat AAS, Han J (2012) Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal Chem 84:9324 Xia HM, Wang ZP, Fan W, Wijaya A, Wang W, Wang ZF (2012) Converting steady laminar flow to oscillatory flow through a hydroelasticity approach at microscales. Lab Chip 12:60 Xie Y, Chindam C, Nama N, Yang S, Lu M, Zhao Y, Mai JD, Costanzo F, Huang TJ (2015) Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device. Sci Rep 5:12572 Yang J, Chen C, Hu I, Lyu P (2007) Design of a self-flapping Mmicrofluidic oscillator and diagnosis with fluorescence methods. J Microelectromech Syst 16:826 Zhou Y, Schroeder CM (2016) Single polymer dynamics under large amplitude oscillatory extension. Phys Rev Fluids 1:053301