Generating the maximum spanning trees of a weighted graph

Journal of Algorithms - Tập 8 - Trang 592-597 - 1987
Fǎnicǎ Gavril1
1Computer Science Division, University of California, Davis, California 95616 USA

Tài liệu tham khảo

Beeri, 1983, On the desirability of acyclic database systems, J. Assoc. Comput. Mach., 30, 479, 10.1145/2402.322389 Bernstein, 1981, Power of natural semijoins, SIAM J. Comput., 10, 751, 10.1137/0210059 Even, 1973 Gabow, 1977, Two algorithms for generating weighted spanning trees in order, SIAM J. Comput., 6, 139, 10.1137/0206011 Gavril, 1974, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B, 16, 47, 10.1016/0095-8956(74)90094-X Goodman, 1983, Syntactic characterization of tree database systems, J. Assoc. Comput. Mach., 30, 767, 10.1145/2157.322405 Minty, 1965, A simple algorithm for listing all the trees of a graph, IEEE Trans. Circuit Theory, CT-12, 120, 10.1109/TCT.1965.1082385 Read, 1975, Bounds on backtrack algorithms for listing cycles, paths and spanning trees, Networks, 5, 237, 10.1002/net.1975.5.3.237 Tarjan, 1984, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13, 566, 10.1137/0213035