Generating prototypical residential building geometry models using a new hybrid approach

Yuanli Ma1, Wu Deng1, Jing Xie1, Tim Heath2, Yeyu Xiang1, Yuanda Hong3
1Department of Architecture and Built Environment, University of Nottingham Ningbo China, Ningbo 315100, China
2Department of Architecture and Built Environment, University of Nottingham, Nottingham, UK
3Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akbari H, Eto J, Heinemeier K, et al. (1989). Integrated estimation of commercial sector end-use load shapes and energy use intensities. Berkeley, CA, USA: Lawrence Berkeley Laboratory.

Ballarini I, Corrado V (2009). Application of energy rating methods to the existing building stock: Analysis of some residential buildings in Turin. Energy and Buildings, 41: 790–800.

Banham R (1984). The Architecture of the Well-tempered Environment, 2nd edn. Chicago: The University of Chicago Press.

Booth A, Choudhary R (2011). Calibrating micro-level models with macro-level data using Bayesian regression analysis. In: Proceedings of the 12th International IBPSA Building Simulation Conference, Sydney, Australia.

Bray D (2006). Building ‘community’: New strategies of governance in urban China. Economy and Society, 35: 530–549.

Danish Energy Agency (2007). The Energy in Denmark. Energy Consumption and Savings. Danish Building Research Institute, Aalborg University. (in Danish)

Dascalaki EG, Droutsa KG, Balaras CA, et al. (2011). Building typologies as a tool for assessing the energy performance of residential buildings—A case study for the Hellenic building stock. Energy and Buildings, 43: 3400–3409.

de Sa P (1999). Mapping the energy future: Energy modeling and climate change policy. Energy Policy, 27: 433–434.

Department for Communities and Local Government (2010). English Housing Survey: Headline Report 2008–09, London.

Dong Y (2013). Research on the development of residential buildings in the centre city of contemporary Guangzhou. PhD Thesis, The South China University of Technology. (in Chinese)

Durand J (1799). Recueil Et Parallèle Des Édifices de Tout Genre Anciens Et Modernes. Hachette Livre — BNF. (in French)

Enkvist P, Nauclér T, Rosander J (2007). A cost curve for greenhouse gas reduction. McKinsey Quarterly, 2007(1): 34–45.

Filogamo L, Peri G, Rizzo G, et al. (2014). On the classification of large residential buildings stocks by sample typologies for energy planning purposes. Applied Energy, 135: 825–835.

Fisher RA (1956). Statistical Methods and Scientific Inference. New York: Hafner Publishing Company.

Freire APCF, Elkins MR, Ramos EMC, et al. (2019). Use of 95% confidence intervals in the reporting of between-group differences in randomized controlled trials: analysis of a representative sample of 200 physical therapy trials. Brazilian Journal of Physical Therapy, 23: 302–310.

GB50352-2005 (2005). Code for Design of Civil Buildings. Ministry of Construction of China. (in Chinese)

German Federal Statistic Authority (2020). Available at https://www.destatis.de/EN/Themes/Society-Environment/Housing/_node.html.

Granade HC, Creyts J, Derkach A, et al. (2009). Unlocking Energy Efficiency in the US Economy. McKinsey & Company.

Hassler U (2009). Long-term building stock survival and intergenerational management: The role of institutional regimes. Building Research & Information, 37: 552–568.

Hernandez P, Burke K, Lewis JO (2008). Development of energy performance benchmarks and building energy ratings for non-domestic buildings: An example for Irish primary schools. Energy and Buildings, 40: 249–254.

Hong Y, Ezeh CI, Deng W, et al. (2020). Correlation between building characteristics and associated energy consumption: Prototyping low-rise office buildings in Shanghai. Energy and Buildings, 217: 109959.

JGJ134-2010 (2010). Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Cold Winter Zone. Ministry of Construction of China. (in Chinese)

Keçebaş A, Yabanova İ (2012). Thermal monitoring and optimization of geothermal district heating systems using artificial neural network: A case study. Energy and Buildings, 50: 339–346.

Kragh J, Wittchen KB (2014). Development of two Danish building typologies for residential buildings. Energy and Buildings, 68: 79–86.

Lang DH, Kumar A, Sulaymanov S, et al. (2018). Building typology classification and earthquake vulnerability scale of Central and South Asian building stock. Journal of Building Engineering, 15: 261–277.

Li X, Yang X (2019). Planning of Ciyun Ancient Street—A practical exploration based on typo-morphological approach. Urban Development Studies, 26(4): 12–16. (in Chinese)

Loga T, Diefenbach N (2011). Use of Building Typologies for Modeling the Energy Balance of the Residential Building Stock. Project partner 2: NOA, TABULA Report, D8.

Ma Y (2017). Study on air-conditioning energy consumption and design optimization of a residential building in Hangzhou based on Architectural Typology. Master Thesis, Zhejiang University. (in Chinese)

Martí Arís C (1993). Las variaciones de la identidad: Ensayo sobre el tipo en arquitectura. Universitat Politècnica de Catalunya (UPC). (in Spain)

MOHURD (2020). Design Standard for Energy Conservation of Residential Buildings in Hot Summer and Warm Winter Areas. Ministry of Housing and Urban-Rural Development of China. Beijing: China Architecture & Building Press. (in Chinese)

Natarajan S, Levermore GJ (2007). Domestic futures—Which way to a low-carbon housing stock? Energy Policy, 35: 5728–5736.

Ningbo Statistics Bureau (2020). Ningbo Statistical Yearbook. Available at http://vod.ningbo.gov.cn:88/nbtjj/tjnj/2019nbnj/indexch.htm. Accessed 10 Mar 2020. (in Chinese)

People’s Government of Ningbo Municipality (2019). Available at http://data.nb.zjzwfw.gov.cn/nbdata/fore/dataList.html?deptid=2ACEBC6F-1D1F-BCB1-D687-1A091B52B238. (in Chinese)

Peri G, Foresta F, Inzerillo L, et al. (2013). Environmentally assessing buildings characterized by complex shape and innovative materials. Advanced Materials Research, 664: 409–414.

Rossi A, Eisenman P, Ghirardo DY, et al. (1982). The Architecture of the City. Cambridge, MA, USA: MIT Press.

Santos C, Ferreira TM, Vicente R, et al. (2013). Building Typologies Identification to Support Risk Mitigation at the Urban scale—Case study of the old city centre of Seixal, Portugal. Journal of Cultural Heritage, 14: 449–463.

Shahrestani M, Yao R, Cook GK (2014). A review of existing building benchmarks and the development of a set of reference office buildings for England and Wales. Intelligent Buildings International, 6: 41–64.

Shi C, Wei B, Wei S, et al. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking, 2021: 3.

SRC (1985). New Office Buildings End-Use Energy Consumption Survey—For Northeast Utilities Service Company. Berlin, CT, USA: Synergic Resources Corp.

Suchmacher M, Geller M (2012). Practical Biostatistics: A Friendly Step-by-step Approach for Evidence-based Medicine. London: Academic Press.

Swan L, Ugursal VI, Beausoleil-Morrison I (2009). Implementation of a Canadian residential energy end-use model for assessing new technology impacts. In: Proceedings of the 11th International IBPSA Building Simulation Conference, Glasgow, UK.

Theodoridou I, Papadopoulos AM, Hegger M (2011a). A typological classification of the Greek residential building stock. Energy and Buildings, 43: 2779–2787.

Theodoridou I, Papadopoulos AM, Hegger M (2011b). Statistical analysis of the Greek residential building stock. Energy and Buildings, 43: 2422–2428.

Tommerup H, Svendsen S (2006). Energy savings in Danish residential building stock. Energy and Buildings, 38: 618–626.

Wan KSY, Yik FWH (2004). Building design and energy end-use characteristics of high-rise residential buildings in Hong Kong. Applied Energy, 78: 19–36.

Wilson D, Swisher J (1993). Exploring the gap Top-down versus bottom-up analyses of the cost of mitigating global warming. Energy Policy, 21: 249–263.

Wittchen K (2009). Potential Energy Savings in Existing Residential Buildings. SBi 2009: 05. Danish Building Research Institute, Aalborg University, Department of Energy and Environment. (in Danish)

Ye Y, Hinkelman K, Zhang J, et al. (2019). A methodology to create prototypical building energy models for existing buildings: a case study on US religious worship buildings. Energy and Buildings, 194: 351–365.

Zhang Q (2004). Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy and Buildings, 36: 1217–1225.

Zhang N, Song X, Zhang J, et al. (2019). Types of residential buildings in the rural and pastoral areas of eastern Mongolia from the regional perspective. Journal of Arid Land Resources and Environment, 33(01): 171–177. (in Chinese)

Zhou Y (2008). Study on the influence on energy-saving by the residential plan in Chongqing. Master Thesis, Chongqing University. (in Chinese)