Generating Boundary Conditions for the Calculation of Tsunami Propagation on Nested Grids

Kensaku Hayashi1, An. G. Marchuk2, Alexander Vazhenin1
1The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
2Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stoker, J.J., Volny na vode.Matematicheskaya teoriya i prilozheniya, (WaterWaves: TheMathematical Theory with Applications), Moscow: IL, 1959.

Titov, V.V., Numerical Modeling of Tsunami Propagation by Using Variable Grids, Tsunamis: Their Science and Hazard Mitigation. Proc. Int. Tsunami Symposium, July 31–August 3, 1989, V.K. Gusiakov (ed.), Novosibirsk: Computing Center, Siberian Branch, USSR Acad. Sci., 1990, pp. 46–51.

Hasan, Md.M., Rahman, S.M.M., and Mahamud, U., Numerical Modeling for the Propagation of Tsunami Wave and Corresponding Inundation, IOSR J. Mech. Civil Eng., 2015, vol. 12, iss. 2, ver. 4, pp. 55–62.

Shigihara, Y. and Fujima, K., Development of Tsunami Model Integrating Several Different Grid Systems, Proc. Fifteenth World Conf. on Earthquake Engineering, Portugal, Lisbon, 2012.

Son, S., Lynett, P.J., and Kim, D.-H., Nested and Multi-Physics Modeling of Tsunami Evolution from Generation to Inundation, Oc.Model., 2011, vol. 38, pp. 96–113.

Karim, Md.F., Ismail, A.I., and Meah, M. A., A Boundary Fitted NestedGridModel for Tsunami Computation along Penang Island in Peninsular Malaysia, Int. J.Math., Comput, Phys., El. Comp. Eng., 2014, vol. 8, no. 2, pp. 277–284.

Gusyakov, V.K., Fedotova, Z.I., Khakimzyanov, G.S., Chubarov, L.B., and Shokin, Yu.I., Some Approaches to Local Modeling of Tsunami Wave Runup on a Coast, Russ. J. Num. An. Math. Model., 2008, vol. 23, no. 6, pp. 551–565.

Harig, S., Chaeroni, C., Pranowo, W.S., and Behrens, J., Tsunami Simulations on Several Scales: Comparison of Approaches with Unstructured Meshes and NestedGrids, Oc. Dyn., 2008, vol. 58, iss. 5, pp. 429–440.

GEBCO Digital Atlas. 1903-Centenary Edition-2003, CDROM, Liverpool: British Oceanographic Data Centre, 2003 (Intergovernmental Oceanographic Commission, International Hydrographic Organization).

Smith, W.H.F. and Sandwell, D.T., Global Seafloor Topography from Satellite Altimetry and Ship Depth Soundings, Science, 1997, vol. 277, iss. 5334, pp. 1956–1962.

Marchuk, An.G., Chubarov, L.B., and Shokin, Yu.I., Chislennoe modelirovanie voln tsunami (Numerical Simulation of TsunamiWaves), Novosibirsk: Nauka, 1983.

Marchuk, An.G., Estimating the Height of a TsunamiWave Propagating over a Parabolic Bottom in the Ray Approximation, Sib. Zh. Vych. Mat., 2017, vol. 20, no. 1, pp. 23–35.

URL: http://jdoss1.jodc.go.jp/vpage/depth500_file.html .

Global Digital ElevationModel, URL: http://www.gdem.aster.ersdac.or.jp/search.jsp .

Lavrentiev, M.M., Romanenko, A.A., Oblaukhov, K.K., Marchuk, An.G., Lysakov, K.F., and Shadrin, M.Yu., FPGA Based Solution for Fast Tsunami Wave Propagation Modeling, Proc. Twenty-Seventh (2017) Int. Ocean and Polar Engineering Conf., June 25–30, 2017, San Francisco, 2017, pp. 924–929.