Generalizing realizability and Heyting models for constructive set theory
Tài liệu tham khảo
P. Aczel, On avoiding dependent choices in formal topology, Talk at the Third Workshop on Formal Topology in Padua.
Aczel, 1986, The type theoretic interpretation of constructive set theory: inductive definitions, 17
Aczel, 1978, The type theoretic interpretation of constructive set theory, 55
P. Aczel, A note on interpreting intuitionistic higher order logic, 1980 (Handwritten note).
P. Aczel, M. Rathjen, Notes on Constructive Set Theory, Institut Mittag-Leffler Preprint 40, 2000/01.
Friedman, 1973, Some applications of Kleene’s methods for intuitionistic systems, 113
Gambino, 2006, Heyting-valued interpretations for constructive set theory, Ann.~Pure Appl.~Logic, 137, 164, 10.1016/j.apal.2005.05.021
Grayson, 1979, Heyting-valued models for intuitionistic set theory, vol. 743, 402
Goodman, 1978, Relativized realizability in intuitionistic arithmetic of all finite types, J. Symbolic Logic, 43, 23, 10.2307/2271946
Hofstra, 2003, Ordered partial combinatory algebras, Math. Proc. Camb. Phil. Soc., 134, 445, 10.1017/S0305004102006424
Kuhnen, 1980
Lipton, 1990, Constructive Kripke semantics and realizability
D.C. McCarty, D.C. McCarty, Realizability and recursive mathematics, Ph.D. Thesis, Oxford University, 1984.
A.M. Pitts, The theory of triposes, Ph.D. Thesis, Cambridge University, 1981.
Sambin, 1987, Intuitionistic formal spaces — a first communication, 187
M. Rathjen, Realizability for constructive Zermelo-Fraenkel set theory, in: V. Stoltenberg-Hansen, J. Väänänen (Eds.), Logic Colloquium’03, Lecture Notes in Logic, vol. 24, 2004.
M. Rathjen, Generalized inductive definitions in constructive set theory, Available at the author’s website.
Troelstra, 1988
A. Ziegler, Eine gemeinsame Verallgemeinerung von Realisierbarkeitsmodellen und Heyting-Algebra bewerteten Modellen, Diplomarbeit, available from the author.
A. Ziegler, The absoluteness of *REA, Typoscript, available from the author, 2007.