Generalized velocity obstacle algorithm for preventing ship collisions at sea
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alonso-Mora, 2018, Cooperative collision avoidance for nonholonomic robots, IEEE Trans. Robot., 34, 404, 10.1109/TRO.2018.2793890
Alonso-Mora, 2012, Reciprocal collision avoidance for multiple car-like robots, 360
Baldauf, 2017, A perfect warning to avoid collisions at sea?, Scientific Journals of the Maritime University of Szczecin, 49, 53
Bareiss, 2013, Reciprocal collision avoidance for robots with linear dynamics using LQR-obstacles, 3847
Bareiss, 2015, Generalized reciprocal collision avoidance, Int. J. Robot Res., 34, 1501, 10.1177/0278364915576234
Benjamin, 2006, A method for protocol-based collision avoidance between autonomous marine surface craft, J. Field Robot., 23, 333, 10.1002/rob.20121
Best, 2017, AutonoVi: autonomous vehicle planning with dynamic maneuvers and traffic constraints
Campbell, 2012, A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres, Annu. Rev. Contr., 36, 267, 10.1016/j.arcontrol.2012.09.008
Chen, 2018, Distributed model predictive control for vessel train formations of cooperative multi-vessel systems, Transport. Res. C Emerg. Technol., 92, 101, 10.1016/j.trc.2018.04.013
Chen, 2018, Ship collision candidate detection method: a velocity obstacle approach, Ocean Eng., 170, 186, 10.1016/j.oceaneng.2018.10.023
Coue, 2006, Bayesian occupancy filtering for multitarget tracking: an automotive application, Int. J. Robot Res., 25, 19, 10.1177/0278364906061158
Daily, 2008, Harmonic potential field path planning for high speed vehicles, 4609
Fiorini, 1998, Motion planning in dynamic environments using velocity obstacle, Int. J. Robot Res., 17, 760, 10.1177/027836499801700706
Fossen, 2002
Goerlandt, 2015, A risk-informed ship collision alert system: framework and application, Saf. Sci., 77, 182, 10.1016/j.ssci.2015.03.015
He, 2017, Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea, Ocean Eng., 140, 281, 10.1016/j.oceaneng.2017.05.029
Hilgert, 1997, A common risk model for the assessment of encounter situations on board ships German, Journal of Hydrography, 49, 531, 10.1007/BF02764347
Huang, 2018, Velocity obstacle algorithms for collision prevention at sea, Ocean Eng., 151, 308, 10.1016/j.oceaneng.2018.01.001
IMO, 1972
Johansen, 2016, Ship collision avoidance and COLREGS compliance using simulation-based control behavior SelectionWith predictive hazard assessment, IEEE Trans. Intell. Transport. Syst., 17, 3407, 10.1109/TITS.2016.2551780
Kearon, 1979, Computer programs for collision avoidance and track keeping
Kuwata, 2014, Safe maritime autonomous navigation with COLREGS, using velocity obstacles, IEEE J. Ocean. Eng., 39, 110, 10.1109/JOE.2013.2254214
Large, 2005, Navigation among moving obstacles using the NLVO: principles and applications to intelligent vehicles, Aut. Robots, 19, 159, 10.1007/s10514-005-0610-8
Lee, 2016, Velocity obstacle based local collision avoidance for a holonomic elliptic robot, Aut. Robots, 41, 1347, 10.1007/s10514-016-9580-2
Lenart, 1983, Collision threat parameters for a new radar display and plot technique, J. Navig., 36, 404, 10.1017/S0373463300039758
Liu, 2016, Unmanned surface vehicles: an overview of developments and challenges, Annu. Rev. Contr., 41, 71, 10.1016/j.arcontrol.2016.04.018
Lyu, 2017, Ship's trajectory planning for collision avoidance at sea based on modified artificial potential field, 351
Montewka, 2014, A framework for risk assessment for maritime transportation systems—a case study for open sea collisions involving RoPax vessels, Reliab. Eng. Syst. Saf., 124, 142, 10.1016/j.ress.2013.11.014
Pedersen, 2003, Simulator studies on a collision avoidance display that facilitates efficient and precise assessment of evasive manoeuvres in congested waterways, J. Navig., 56, 411, 10.1017/S0373463303002388
Skjetne, 2004, A Nonlinear Ship Manoeuvering Model: identification and adaptive control with experiments for a model ship, Model. Ident. Contr.: A Norwegian Research Bulletin, 25, 3, 10.4173/mic.2004.1.1
Szlapczynski, 2018, Ship domain applied to determining distances for collision avoidance manoeuvres in give-way situations, Ocean Eng., 165, 43, 10.1016/j.oceaneng.2018.07.041
Szlapczynski, 2015, A target information display for visualising collision avoidance manoeuvres in various visibility conditions, J. Navig., 68, 1041, 10.1017/S0373463315000296
Szlapczynski, 2016, An analysis of domain-based ship collision risk parameters, Ocean Eng., 126, 47, 10.1016/j.oceaneng.2016.08.030
Szlapczynski, 2017, A method of determining and visualizing safe motion parameters of a ship navigating in restricted waters, Ocean Eng., 129, 363, 10.1016/j.oceaneng.2016.11.044
Tam, 2009, Review of collision avoidance and path planning methods for ships in close range encounters, J. Navig., 62, 455, 10.1017/S0373463308005134
van den Berg, 2011, Reciprocal n-body collision avoidance, Robotics Research, 70, 3, 10.1007/978-3-642-19457-3_1
Van Gelder, 1991
Velasco, 2015, The use of intent information in conflict detection and resolution models based on dynamic velocity obstacles, IEEE Trans. Intell. Transport. Syst., 16, 2297, 10.1109/TITS.2014.2376031
Wang, 2017, The ship maneuverability based collision avoidance dynamic support system in close-quarters situation, Ocean Eng., 146, 486, 10.1016/j.oceaneng.2017.08.034
Wilkie, 2009, Generalized velocity obstacles, 2009, 5573
Zhang, 2012, A novel approach for assistance with anti-collision decision making based on the International Regulations for Preventing Collisions at Sea, Proc. IME M J. Eng. Marit. Environ., 226, 250
Zhang, 2015, A distributed anti-collision decision support formulation in multi-ship encounter situations under COLREGs, Ocean Eng., 105, 336, 10.1016/j.oceaneng.2015.06.054
Zhang, 2017, Dynamic obstacle avoidance for unmanned underwater vehicles based on an improved velocity obstacle method, Sensors, 17, 10.3390/s17122742
Zhao, 2016, A real-time collision avoidance learning system for Unmanned Surface Vessels, Neurocomputing, 182, 255, 10.1016/j.neucom.2015.12.028