Generalized linear mixed models: a practical guide for ecology and evolution

Trends in Ecology & Evolution - Tập 24 Số 3 - Trang 127-135 - 2009
Benjamin M. Bolker1, Mollie E. Brooks1, Connie J. Clark1, Shane W. Geange2, John R. Poulsen1, M. Henry H. Stevens3, Jada-Simone S. White1
1Department of Botany and Zoology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
2School of Biological sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
3Department of Botany, Miami University, Oxford, OH 45056, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Milsom, 2000, Habitat models of bird species distribution: an aid to the management of coastal grazing marshes, J. Appl. Ecol., 37, 706, 10.1046/j.1365-2664.2000.00529.x

Vergara, 2007, Arrival date, age and breeding success in white stork Ciconia ciconia, J. Avian Biol., 38, 573, 10.1111/j.0908-8857.2007.03983.x

Pawitan, 2004, Estimation of genetic and environmental factors for binary traits using family data, Stat. Med., 23, 449, 10.1002/sim.1603

Kalmbach, 2001, Increased reproductive effort results in male-biased offspring sex ratio: an experimental study in a species with reversed sexual size dimorphism, Proc. Biol. Sci., 268, 2175, 10.1098/rspb.2001.1793

Smith, 2006, A role for vector-independent transmission in rodent trypanosome infection?, Int. J. Parasitol., 36, 1359, 10.1016/j.ijpara.2006.06.014

Jinks, 2006, Direct seeding of ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.): the effects of sowing date, pre-emergent herbicides, cultivation, and protection on seedling emergence and survival, For. Ecol. Manage., 237, 373, 10.1016/j.foreco.2006.09.060

Elston, 2001, Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks, Parasitology, 122, 563, 10.1017/S0031182001007740

Gilmour, 1985, The analysis of binomial data by a generalized linear mixed model, Biometrika, 72, 593, 10.1093/biomet/72.3.593

Kruuk, 2002, Antler size in red deer: heritability and selection but no evolution, Evolution, 56, 1683, 10.1111/j.0014-3820.2002.tb01480.x

Wilson, 2006, Environmental coupling of selection and heritability limits evolution, PLoS Biol., 4, e216, 10.1371/journal.pbio.0040216

Chesson, 2000, Mechanisms of maintenance of species diversity, Annu. Rev. Ecol. Syst., 31, 343, 10.1146/annurev.ecolsys.31.1.343

Melbourne, 2008, Extinction risk depends strongly on factors contributing to stochasticity, Nature, 454, 100, 10.1038/nature06922

Fox, 2002, Demographic stochasticity and the variance reduction effect, Ecology, 83, 1928, 10.1890/0012-9658(2002)083[1928:DSATVR]2.0.CO;2

Pfister, 2003, Individual variation and environmental stochasticity: implications for matrix model predictions, Ecology, 84, 496, 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO;2

Quinn, 2002

Crawley, 2002

Johnson, 2004, Model selection in ecology and evolution, Trends Ecol. Evol., 19, 101, 10.1016/j.tree.2003.10.013

Whittingham, 2006, Why do we still use stepwise modelling in ecology and behaviour?, J. Anim. Ecol., 75, 1182, 10.1111/j.1365-2656.2006.01141.x

Ellison, 2004, Bayesian inference in ecology, Ecol. Lett., 7, 509, 10.1111/j.1461-0248.2004.00603.x

Browne, 2006, A comparison of Bayesian and likelihood-based methods for fitting multilevel models, Bayesian Anal., 1, 473, 10.1214/06-BA117

Lele, 2006, Sampling variability and estimates of density dependence: a composite-likelihood approach, Ecology, 87, 189, 10.1890/04-1655

Schall, 1991, Estimation in generalized linear models with random effects, Biometrika, 78, 719, 10.1093/biomet/78.4.719

Wolfinger, 1993, Generalized linear mixed models: a pseudo-likelihood approach, J. Statist. Comput. Simulation, 48, 233, 10.1080/00949659308811554

Breslow, 1993, Approximate inference in generalized linear mixed models, J. Am. Stat. Assoc., 88, 9, 10.2307/2290687

Raudenbush, 2000, Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation, J. Comput. Graph. Statist., 9, 141, 10.2307/1390617

Pinheiro, 2006, Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models, J. Comput. Graph. Statist., 15, 58, 10.1198/106186006X96962

Gilks, 1996, Introducing Markov chain Monte Carlo, 1

Pinheiro, 2000

Littell, 2006

Breslow, 2004, Whither PQL?, 1

Rodriguez, 2001, Improved estimation procedures for multilevel models with binary response: a case-study, J. R. Stat. Soc. Ser. A Stat. Soc., 164, 339, 10.1111/1467-985X.00206

Goldstein, 1996, Improved approximations for multilevel models with binary responses, J. R. Stat. Soc. Ser. A Stat. Soc., 159, 505, 10.2307/2983328

Lee, 2001, Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions, Biometrika, 88, 987, 10.1093/biomet/88.4.987

McCarthy, 2007

Berger, 2006, The case for objective Bayesian analysis, Bayesian Anal., 1, 385, 10.1214/06-BA115

Carlin, 2006, Elements of hierarchical Bayesian inference, 3

Cowles, 1996, Markov chain Monte Carlo convergence diagnostics: a comparative review, J. Am. Stat. Assoc., 91, 883, 10.2307/2291683

Brooks, 1998, General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Statist., 7, 434, 10.2307/1390675

Paap, 2002, What are the advantages of MCMC based inference in latent variable models? Stat, Neerl., 56, 2, 10.1111/1467-9574.00060

Booth, 1999, Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm, J. R. Stat. Soc. Ser. B Methodological, 61, 265, 10.1111/1467-9868.00176

Lele, 2007, Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods, Ecol. Lett., 10, 551, 10.1111/j.1461-0248.2007.01047.x

Stephens, 2005, Information theory and hypothesis testing: a call for pluralism, J. Appl. Ecol., 42, 4, 10.1111/j.1365-2664.2005.01002.x

Burnham, 2002

Agresti, 2002

Molenberghs, 2007, Likelihood ratio, score, and Wald tests in a constrained parameter space, Am. Stat., 61, 22, 10.1198/000313007X171322

Demidenko, 2004

Scheipl, 2008, Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models, Comput. Stat. Data Anal., 52, 3283, 10.1016/j.csda.2007.10.022

Greven, 2008

Vaida, 2005, Conditional Akaike information for mixed-effects models, Biometrika, 92, 351, 10.1093/biomet/92.2.351

Gelman, 2006

Spiegelhalter, 2002, Bayesian measures of model complexity and fit, J. R. Stat. Soc. B, 64, 583, 10.1111/1467-9868.00353

Baayen, 2008, Mixed-effects modeling with crossed random effects for subjects and items, J. Mem. Lang., 59, 390, 10.1016/j.jml.2007.12.005

Gelman, 2005, Analysis of variance: why it is more important than ever, Ann. Stat., 33, 1, 10.1214/009053604000001048

Banta, 2007, Evidence of local adaptation to coarse-grained environmental variation in Arabidopsis thaliana, Evolution, 61, 2419, 10.1111/j.1558-5646.2007.00189.x

Banta, J.A. (2008) Tolerance to apical meristem damage in Arabidopsis thaliana (Brassicaceae): a closer look and the broader picture. PhD dissertation, Stony Brook University

Schabenberger, O. (2007) Growing up fast: SAS® 9.2 enhancements to the GLIMMIX procedure. SAS Global Forum 2007, 177 (www2.sas.com/proceedings/forum2007/177-2007.pdf)

Self, 1987, Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Am. Stat. Assoc., 82, 605, 10.2307/2289471

Stram, 1994, Variance components testing in the longitudinal fixed effects model, Biometrics, 50, 1171, 10.2307/2533455

Goldman, 2000, Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics, Mol. Biol. Evol., 17, 975, 10.1093/oxfordjournals.molbev.a026378

Dominicus, 2006, Likelihood ratio tests in behavioral genetics: problems and solutions, Behav. Genet., 36, 331, 10.1007/s10519-005-9034-7

Aukema, 2005, Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships, For. Ecol. Manage., 217, 187, 10.1016/j.foreco.2005.05.062

Schaalje, G.B. et al. (2001) Approximations to distributions of test statistics in complex mixed linear models using SAS Proc MIXED. SUGI (SAS User's Group International) 26, 262 (www2.sas.com/proceedings/sugi26/p262-26.pdf)

Schaalje, 2002, Adequacy of approximations to distributions of test statistics in complex mixed linear models, J. Agric. Biol. Environ. Stat., 7, 512, 10.1198/108571102726

Gotelli, 2004

Harrell, 2001

Lindsey, 1997

Venables, 2002