Generalized Quasi-Variational Inequalities in Infinite-Dimensional Normed Spaces

Journal of Optimization Theory and Applications - Tập 92 - Trang 457-475 - 1997
P. Cubiotti

Tóm tắt

In this paper, we deal with the following problem: given a real normed space E with topological dual E*, a closed convex set X⊑E, two multifunctions Γ:X→2X and $$\Phi :X \to 2^{E^* } $$ , find $$(\hat x,\hat \phi ) \in X \times E^* $$ such that $$\hat x \in \Gamma (\hat x),\hat \phi \in \Phi (\hat x),{\text{ and }}\mathop {{\text{sup}}}\limits_{y \in \Gamma (\hat x)} \left\langle {\hat \phi ,\hat x - y} \right\rangle \leqslant 0.$$ We extend to the above problem a result established by Ricceri for the case Γ(x)≡X, where in particular the multifunction Φ is required only to satisfy the following very general assumption: each set Φ(x) is nonempty, convex, and weakly-star compact, and for each y∈X−:X the set $$\{ x \in X:\inf _{\phi \in \Phi (x)} \left\langle {\phi ,y} \right\rangle \leqslant 0\} $$ is compactly closed. Our result also gives a partial affirmative answer to a conjecture raised by Ricceri himself.

Tài liệu tham khảo

CHAN, D., and PANG, J. S., The Generalized Quasi-Variational Inequality Problem, Mathematics of Operations Research, Vol. 7, pp. 211–222, 1982. SHIH, M. H., and TAN, K. K., Generalized Quasi-Variational Inequalities in Locally Convex Topological Vector Spaces, Journal of Mathematical Analysis and Applications, Vol. 108, pp. 333–343, 1985. BENSOUSSAN, A., and LIONS, J. L., Nouvelle Formulation de Problèmes de Contrôle Impulsionnel et Applications, Comptes Rendus de l'Académie des Sciences, Paris, Vol. 276, pp. 1189–1192, 1973. BENSOUSSAN, A., GOURSAT, M., and LIONS, J. L., Contrôle Impulsionnel et Inéquations Quasi-Variationnelles Stationnaires, Comptes Rendus de l'Académie des Sciences, Paris, Vol. 276, pp. 1279–1284, 1973. BENSOUSSAN, A., and LIONS, J. L., Nouvelles Méthodes en Contrôle Impulsionnel, Applied Mathematics and Optimization, Vol. 1, pp. 289–312, 1974. HARKER, P. T., and PANG, J. S., Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications, Mathematical Programming, Vol. 48, pp. 161–220, 1990. BAIOCCHI, C., and CAPELO, A., Variational and Quasi-Variational Inequalities: Application to Free-Boundary Problems, John Wiley and Sons, New York, New York, 1984. GIANNESSI, F., and MAUGERI, A., Editors, Variational Inequalities and Network Equilibrium Problems, Plenum Press, New York, New York, 1995. MOSCO, U., Implicit Variational Problems and Quasi-Variational Inequalities, Lecture Notes in Mathematics, Springer, Berlin, Germany, Vol. 543, 1976. KIM, W. K., Remark on a Generalized Quasi-Variational Inequality, Proceedings of the American Mathematical Society, Vol. 103, pp. 667–668, 1988. CUBIOTTI, P., An Existence Theorem for Generalized Quasi-Variational Inequalities, Set-Valued Analysis, Vol. 1, pp. 81–87, 1993. RICCERI, B., Un Théoreme d'Existence pour les Inéquations Variationnelles, Comptes Rendus de l'Académie des Sciences, Paris, Série I, Vol. 301, pp. 885–888, 1985. RICCERI, B., Basic Existence Theorems for Generalized Variational and Quasi-Variational Inequalities, Variational Inequalities and Network Equilibrium Problems, Edited by F. Giannessi and A. Maugeri, Plenum Press, New York, New York, pp. 251–255, 1995. FRASCA, M., and VILLANI, A., A Property of Infinite-Dimensional Hilbert Spaces, Journal of Mathematical Analysis and Applications, Vol. 139, pp. 352–361, 1989. YEN, N. D., On an Existence Theorem for Generalized Quasi-Variational Inequalities, Set-Valued Analysis, Vol. 3, pp. 1–10, 1995. SPAKOWSKI, A., On Approximation by Step Multifunctions, Commentationes Mathematicae, Vol. 25, pp. 363–371, 1985. LECHICKI, A., and SPAKOWSKI, A., A Note on Intersection of Lower Semicontinuous Multifunctions, Proceedings of the American Mathematical Society, Vol. 95, pp. 119–122, 1985. KLEIN, E., and THOMPSON, A. C., Theory of Correspondences, John Wiley and Sons, New York, New York, 1984. AUBIN, J. P., and FRANKOWSKA, H., Set-Valued Analysis, Birkhäuser, Boston, Massachusetts, 1990. VALENTINE, F. A., Convex Sets, McGraw-Hill, New York, New York, 1964. NASELLI RICCERI, O., On the Covering Dimension of the Fixed-Point Set of Certain Multifunctions, Commentationes Mathematicae Universitatis Carolinae, Vol. 32, pp. 281–286, 1991. MICHAEL, E., Continuous Selections I, Annals of Mathematics, Vol. 63, pp. 361–382, 1956. AUBIN, J. P., Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, Holland, 1979.