Generalized Maxwell–Boltzmann Distribution for Rotating Spinning Particle Gas
Tóm tắt
We consider statistical mechanics of rotating ideal gas of non-relativistic spinning particles. Applying the Gibbs canonical distribution function for a rotating system with fixed value of angular velocity and temperature, we find the one-particle distribution function generalizing the classical Maxwell–Boltzmann distribution. Our analysis demonstrates that the spin-orbital interaction makes the spin distribution asymmetric. This demonstrates the presence of chiral effects in the systems of spinning particles.
Tài liệu tham khảo
J. Frenkel, “Die Elektrodynamik des rotierenden Elektrons,” Z. Phys. 37, 243–262 (1926).
H. C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, 1968).
A. A. Deriglazov and W. G. Ramírez, “Recent progress on the description of relativistic spin: Vector model of spinning particle and rotating body with gravimagnetic moment in general relativity,” Adv. Math. Phys. 2017, 7397159 (2017). arXiv:1710.07135 [gr-qc].
J. H. Field, E. Picasso, and F. Combley, “Tests of fundamental physical theories from measurements of free charged leptons,” Sov. Phys. Usp. 22, 199–219 (1979).
J. P. Miller, E. de Rafael, and B. L. Roberts, “Muon (g‑2): Experiment and theory,” Rep. Prog. Phys. 70, R03 (2007).
C. M. Will, “The confrontation between general relativity and experiment,” Liv. Rev. Rel. 17, 4 (2014).
S. J. Barnett, “Magnetization by rotation,” Phys. Rev. 6, 239–270 (1915).
A. Einstein and W. J. de Hass, “Experimenteller Nachweis der ampereschen Molekularstroeme,” Deut. Physik. Ges. 17, 152–170 (1915).
K. Fukushima, “Extreme matter in electromagnetic fields and rotation,” Prog. Part. Nucl. Phys. 107, 167—199 (2019). arXiv:1812.08886 [physics].
W. Florkowski, A. Kumar, and R. Ryblewski, “Relativistic hydrodynamics for spin-polarized fluids,” Prog. Part. Nucl. Phys. 108, 103709 (2019). arXiv:1811.04409 [nucl-th].
M. A. Bubenchikov, D. S. Kaparulin, and O. D. Nosyrev, “Chiral effects in classical spinning gas,” J. Phys. A: Math. Theor. 55, 395006 (2022). arXiv:2205.06682 [cond-mat].
J. W. Gibbs, Elementary Principles of Statistical Mechanics (Scribner and Sons, 1902; Gos. Izd. Tekh.-Teor. Lit., Moscow, 1948).
D. S. Kaparulin and N. N. Levin, “Maxwell-Juttner distribution for rotating spinning particle gas,” arXiv: 2302.05639 [cond-mat].