Generalized Lagrangian mean curvature flows in almost Calabi–Yau manifolds

Journal of Geometry and Physics - Tập 117 - Trang 68-83 - 2017
Jun Sun1, Liuqing Yang2
1School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR China
2Department of Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, PR China

Tài liệu tham khảo

Strominger, 1996, Mirror symmetry is T-duality, Nuclear Phys. B, 479, 243, 10.1016/0550-3213(96)00434-8 K. Smoczyk, A canonical way to deform a Lagrangian submanifold, 1996. arXiv:dg-ga/9605005 Chen, 2004, Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math., 156, 25, 10.1007/s00222-003-0332-5 Neves, 2007, Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., 168, 449, 10.1007/s00222-007-0036-3 Thomas, 2002, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom., 10, 1075, 10.4310/CAG.2002.v10.n5.a8 Wang, 2001, Mean curvature flow of surfaces in Einstein four manifolds, J. Differential Geom., 57, 301, 10.4310/jdg/1090348113 Behrndt, 2011, Generalized Lagrangian mean curvature flow in Kähler manifolds that are almost Einstein, vol. 8, 65 Smoczyk, 2011, Generalized Lagrangian mean curvature flows in symplectic manifolds, Asian J. Math., 15, 129, 10.4310/AJM.2011.v15.n1.a7 Joyce, 2007, Riemannian holonomy groups and calibrated geometry Harvey, 1982, Calibrated geometries, Acta Math., 148, 47, 10.1007/BF02392726 Huisken, 1990, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31, 285, 10.4310/jdg/1214444099 Smoczyk, 2000, The Lagrangian mean curvature flow (Der Lagrangesche mittlere Krümmungsfluβ), Leipzig: Univ. Leipzig (Habil.), 102 S. Groh, 2007, Mean curvature flow of monotone Lagrangian submanifolds, Math. Z., 257, 295, 10.1007/s00209-007-0126-3 Li, 2014, Generalized symplectic mean curvature flows in almost Einstein surfaces, Chin. Ann. Math. Ser. B, 35, 33, 10.1007/s11401-013-0817-5 Han, 2012, ε0-regularity for mean curvature flow from surface to flat Riemannian manifold, Acta Math. Sinica, Engl. Ser. Mar., 28, 1475, 10.1007/s10114-012-9271-7 Huisken, 1986, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84, 463, 10.1007/BF01388742 Chen, 2001, Mean curvature flow of surfaces in 4-manifolds, Adv. Math., 163, 287, 10.1006/aima.2001.2008 Ilmanen, 1994, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 520 T. Colding, W.P. Minicozzi, Minimal surfaces, in: Courant Lecture Notes in Mathematics, New York, 1999