Generalized Kantorovich forms of exponential sampling series
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acar, T., Alagöz, O., Aral, A., Costarelli, D., Turgay, M., Vinti, G.: Convergence of generalized sampling series in weighted spaces. submitted
Acar, T., Kursun, S., Turgay, M.: Multidimensional Kantorovich modifications of exponential sampling series. Quaest. Math. (2022). https://doi.org/10.2989/16073606.2021.1992033
Angeloni, L., Vinti, G.: A characterization of absolute continuity by means of Mellin integral operators. Z. Anal. Anwend. 34, 343–356 (2015)
Angeloni, L., Vinti, G.: Convergence in variation and a characterization of the absolute continuity. Integral Transforms Spec. Funct. 26, 829–844 (2015)
Bertero, M., Pike, E.R.: Exponential sampling method for Laplace and other dilationally invariant transforms I. Singular system analysis. II. Examples in photon correction spectroscopy and Frauenhofer diffraction. Inverse Prob. 7, 1–20 (1991)
Bardaro, C., Bevignani, G., Mantellini, I., Seracini, M.: Bivariate generalized exponential sampling series and applications to seismic waves. Constr. Math. Anal. 2(4), 153–167 (2019)
Bardaro, C., Faina, L., Mantellini, I.: Quantitative approximation properties for iterates of moment operator. Math. Model. Anal. 20, 261–272 (2015)
Bardaro, C., Faina, L., Mantellini, I.: A generalization of the exponential sampling series and its approximation properties. Math. Slovaca 67(6), 1481–1496 (2017)
Bardaro, C., Mantellini, I.: Voronovskaya-type estimates for Mellin convolution operators. Results Math. 50(1–2), 1–16 (2007)
Bardaro, C., Mantellini, I.: A quantitative Voronovskaya formula for Mellin convolution operators. Mediterr. J. Math. 7(4), 483–501 (2010)
Bardaro, C., Mantellini, I.: Asymptotic behaviour of Mellin-Fejer convolution operators. East J. Approx. 17(2), 181–201 (2011)
Bardaro, C., Mantellini, I.: A note on the Voronovskaja theorem for Mellin-Fejer convolution operators. Appl. Math. Lett. 24, 2064–2067 (2011)
Bardaro, C., Mantellini, I.: Asymptotic formulae for linear combinations of generalized sampling type operators. Z. Anal. Anwend. 32, 279–298 (2013)
Bardaro, C., Mantellini, I.: On Mellin convolution operators: a direct approach to the asymptotic formulae. Integral Transforms Spec. Funct. 25, 182–195 (2014)
Bardaro, C., Mantellini, I.: On a Durrmeyer-type modification of the exponential sampling series. Rend. Circ. Mat. Palermo Ser. 2(70), 1289–1304 (2021)
Bardaro, C., Mantellini, I., Schmeisser, G.: Exponential sampling series: convergence in Mellin-Lebesgue spaces. Results Math. 74, 119 (2019)
Butzer, P.L., Jansche, S.: A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3, 325–375 (1997)
Butzer, P.L., Jansche, S.: The finite Mellin transform, Mellin-Fourier series and the Mellin-Poisson summation formula. Rend. Circ. Mat. Palermo Ser. II 52, 55–81 (1998)
Butzer, P.L., Jansche, S.: The exponential sampling theorem of signal analysis. Atti Sem. Mat. Fis. Univ. Modena. 46, 99–122 (1998). special issue dedicated to Prof. Calogero Vinti
Butzer, P.L., Jansche, S.: A self-contained approach to Mellin transform analysis for square integrable functions; applications. Integral Transforms Spec. Funct. 8, 175–198 (1999)
Butzer, P.L., Jansche, S.: Mellin transform, the Mellin-Poisson summation formula and the exponential sampling theorem. Atti Sem. Mat. Fis. Univ. Modena 46, 99–122 (1998). (a special volume dedicated to Professor Calogero Vinti)
Costarelli, D., Vinti, G.: Saturation by the Fourier transform method for the sampling Kantorovich series based on bandlimited kernels, Analysis and Mathematical. Physics 9, 2263–2280 (2019)
Costarelli, D., Vinti, G.: Inverse results of approximation and the saturation order for the sampling Kantorovich series. J. Approx. Theory 242, 64–82 (2019)
Gori, F.: Sampling in optics. In: Marks, R.J., II. (ed.) Advances Topics in Shannon Sampling and Interpolation Theory, pp. 37–83. Springer, New York (1993)
Kumar, S.A., Bajpeyi, S.: Direct and inverse results for Kantorovich type exponential sampling series. Results Math. 75, 119 (2020)
Kursun, S., Turgay, M., Alagöz, O., Acar, T.: Approximation properties of multivariate exponential sampling series. Carpath. Math. Publ. 13(3), 666–675 (2021)
Mamedov, R. G.: The Mellin Transform and Approximation Theory, (in Russian), “Elm”, Baku, (1991)