Generalized Jacobi Elliptic Solutions for the KdV Equation with Dual Power Law Non-Linearity and for the Power Law KdV-Burger Equation with the Source
Tóm tắt
Within the framework of an improved Jacobi elliptic expansion method, we study the Jacobi elliptic solutions for the Korteweg-de Vries (KdV) equation with dual power law nonlinearity and the power law KdV-Burger equation with the source. We thus have for each equation, the opportunity to consider three cases: the lower order powers (
$$n = 1\,,2$$
) and the higher order powers (
$$ n\ge 3$$
). It turns out that a huge family of Jacobi elliptic solutions, subject to some conditions are obtained as solutions in the lower order powers cases, while the higher order powers that require strong constraints give us the elliptic solutions in the limits of the modulus.
Tài liệu tham khảo
Ablowitz, M.J., Clarkson, P.A.: Solitons nonlinear evolution equations and inverse scattering. Cambridge University Press, New York (1991)
Matveev, V.B., Matveev, V.: Darboux transformations and solitons. Springer-Verlag, New York (1991)
Ma, W.X.: N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt. Quant. Electron. 52, 511 (2020)
Beals, R., Sattinger, D.H.: On the complete integrability of completely integrable systems. Comm. Math. Phys. 138, 409 (1991)
Majola, C., Muatjetjeja, B., Adem, A.R.: Symmetry reductions and exact solutions of a two-wave mode Korteweg-de Vrie equation. Int. J. Nonlinear Anal. Appl. 12, 733 (2021)
Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Japan 34, 1289 (1972)
Szablikowski, B., M.: Institute of Physics, A. Mickiewicz University, Geometric aspects of integrable systems, Poznan, Poland January 14, (2008)
Ma, W.X.: N-soliton solutions and the Hirota conditions in (1 + 1)-dimensions. IJNSNS 23, 123 (2022)
Zhaqilao, Q.: Nth-order rogue wave solutions of the complex modified Korteweg-de Vries equation. Phys. Scr. 87, 046401 (2013)
Gerdjikov, V.S., Vilasi, G., Yanovski, A.B.: Integrable hamiltonian hierarchies.Spectral and Geometric Methods. Springer Verlag, Berlin-Heidelberg-New York, (2008)
Gerdjikov, V., S., Kostov, N. A.: Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type. SIGMA 4, 029 (2008), http://arxiv.org/abs/0803.1651
Ma, W.X.: Riemann-Hilbert problems and soliton solutions of nonlocal reverse- time NLS hierarchies. AKNS Hierar. Acta Math. Scientia 42B, 127 (2022)
Ma, W.X.: Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-space time matrix AKNS hierarchies. Phys. D 430, 133078 (2022)
Fibay, U., Kudryashov, N.A., Tala-Tebue, E., Malwe Boudoue, H., Doka, S.Y., Kofane, T.C.: Exact solutions of the Kdv equation with dual-power. Comp. Math. and Math. Phys 61, 431 (2021)
Kumar, V.S., Rezazadeh, H., Eslami, M., Izadi, F., Osman, M.S.: Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity. Int. J. Appl. Comput. Math. 5, 127 (2019)
Wanga, G.W., Xua, T.Z., Abazarib, R., Jovanoskic, Z., Biswas, A.: Shock waves and other solutions to the benjamin bona mahoney burgers equation with dual power-law nonlinearity. Acta PhysPolonica A 126, 841 (2014)
Taghizadeh, N., Mirzazadeh, M., Samiei Paghaleh, A.: Exact solutions for the nonlinear Schr\(\ddot{o}\)dinger equation with power law nonlinearity. Math. Sci. Lett. 1, 1, 7 (2012)
Li, H.M., Zhao, J.Q., You, L.Y.: Soliton solutions of cubic-quintic nonlinear Schr\(\ddot{o}\)dinger equation with combined time-dependent magnetic-optical potentials. Indian J. Phys. (2015). https://doi.org/10.1007/s12648-015-0684-x
Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A. 289, 69 (2001)
Younis, M., Ali, S., Mahmood, A.: Solitons for compound KdV-Burgers equation with variable coefficients and power law nonlinearity. Nonlinear Dyn. 81, 1191 (2015)
Rezazadeh, H., Vahidi, J., Zafar, A., Bekir, A.: The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity. https://doi.org/10.1515/ijnsns-2019-0064
Goitsemang, T., Mothibi, D.M., Muatjetjeja, B., Motsumi, T.G.: Symmetry analysis and conservation laws of a further modified 3D Zakharov-Kuznetsov equation. Results Phys. 19, 103401 (2020)
Elsayed Zayed, M.E., Mohamed Alngar, E.M., Biswas, A., Kara, A.H., Moraru, L.M., Ekici, A., Alzahrani, K., Belic, M.R.: Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity. J. Opt. 49, 584 (2020)
Parkes, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A. 295, 280 (2002)
Bin, L., Hong-Qing, Z.: Application of Extended Projective Riccati Equation Method to (2+1)-Dimensional Broer Kaup Kupershmidt System Commun. Theor. Phys. 50, 814 (2008)
Chen, H., Zhang, H.: Extended jacobin elliptic function method and tis applictaions. J. Appl. Math. Comput. 10, 119 (2002)
Kudryashov, N.A., Safonova, D.V.: Nonautonomous first integrals and general solutions of the KdV-Burgers and mKdV-Burgers equations with the source. Math. Meth. Appl. Sci. 42, 4627636 (2019). https://doi.org/10.1002/mma.5684
Sindib, C.T., Manafiana, J.: Wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized G’/G-expansion method. Math. Meth. Appl. Sci. (2017). https://doi.org/10.1002/mma.4309
Xiao, Y., Xue, H., Zhang, H.: A new extended jacobi elliptic function expansion method and its application to the generalized shallow water wave equation. J. Appl. Math. (2012). https://doi.org/10.1155/2012/896748
Khodadad, F., Nazari, F., Eslami, M., Rezazadeh, H.: Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity. Opt. Quant. Electron. 49, 384 (2017)
Krisnangkura, M., Chinviriyasit, S., Chinviriyasit, W.: Analytic study of the generalized Burger’s Huxley equation by hyperbolic tangent method. Appl. Math. Comput. 218, 10843 (2012)
Zhang, Z.Y.: Jacobi elliptic function expansion method for the modified korteweg-de vries-zakharov-kuznetsov and the hirota. Rom. J. Phys. 60, 1384–1394 (2015)
Nasreen, N., Seadawy, Aly, R., Lu, D., Arshad, M.: Solitons and elliptic function solutions of higher-order dispersive and perturbed nonlinear Schr\(\ddot{o}\)dinger equations with the power-law nonlinearities in non-Kerr medium. Eur. Phys. J. Plus 134 (2019)
William, A.: Schwalm: lectures on selected topics in mathematical physics : elliptic functions and elliptic integrals. Morgan and Claypool Publishers, California (2015)
Frank Olver, W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W.: NIST handbook of mathematical functions; 3rd Ed., pp 549-568 (2010)
Peng, Y.Z.: New exact solutions to the combined KdV and mKdV equation. I. J. Theor. Phys. 42, 85 (2003)
Modak, S., Singh, A.P., Panigrahi, P.K.: Complex solitary waves and soliton trains in KdV and mKdV equations. Eur. Phys. J. B 89, 84 (2016)