Generalized Hopf Formulas for the Nonautonomous Hamilton–Jacobi Equation

Computational Mathematics and Modeling - Tập 11 - Trang 391-400 - 2000
I. V. Rublev

Tóm tắt

Generalized Hopf formulas are provided for minimax (viscosity) solutions of Hamilton–Jacobi equations of the form V t + H(t, D x V) = 0 and V t + H(t, V, D x V) = 0 with the boundary condition V(T, x) = ϕ(x), where ϕ is a convex function. The bounds within which these formulas apply are elucidated.

Tài liệu tham khảo

A. I. Subbotin, Minimax Solutions and the Hamilton-Jacobi Equation [in Russian], Nauka, Moscow (1991). A. I. Subbotin, “Minimax solutions of first-order partial differential equations,” Usp. Mat. Nauk, 51, No. 2, 105-138 (1996). D. B. Silin, “Set-valued integration and viscosity solutions of the Hamilton-Jacobi equation,” Differents. Uravn., 31, 129-137 (1995). D. B. Silin, “Viscosity solutions via unbounded set-valued integration,” Nonlinear Anal. T. M. A., 31, 55-90 (1998). E. Hopf, “Generalized solutions of nonlinear equations of first order,” J. Math. Mech., 14, 951-973 (1965). R. T. Rockafellar, Convex Analysis [Russian translation], Mir, Moscow (1973). E. N. Barron and H. Ishii, “The Bellman equation for minimizing the maximum cost,” Nonlinear Anal. T. M. A., 13, 1067-1090 (1989). E. N. Barron, R. Jensen, and W. Liu, “Hopf-Lax formula for u t + H(u, Du) = 0, II,” Comm. PDE, 22, 1141-1160 (1997). M. G. Crandall and L. C. Evans, “Viscosity solutions of Hamilton-Jacobi equations,” Trans. AMS, 277, 1-42 (1983). M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi equations,” Trans. AMS, 282, 487-502 (1984).