Generalized Chaplygin’s transformation and explicit integration of a system with a spherical support

Alexey V. Borisov1, Alexander A. Kilin1, Ivan S. Mamaev1
1Institute of Computer Science, Udmurt State University, Izhevsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borisov, A. V., Bolsinov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].

Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: Regular & Chaotic Dynamics, 2005 (Russian).

Borisov, A. V. and Mamaev, I. S., Rolling of a Non-Homogeneous Ball over a Sphere without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.

Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Selected Problems on Nonholonomic Mechanics, Epreprint, 2005 (Russian) http://ics.org.ru/doc?book=30&dir=r .

Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148 [Russian original: Matem. Sb., 1903, vol. 24, no. 1, pp. 139–168; reprinted in: Collected Works: Vol. 1, Moscow-Leningrad: GITTL, 1948, pp. 76–101].

Chung, W., Nonholonomic Manipulators, Springer Tracts in Advanced Robotics, vol. 13, Berlin-New York: Springer, 2004.

Duistermaat, J. J., Chaplygin’s Sphere, arXiv:math/0409019v1

Eisenhart, L.P., Separable Systems of Stäckel, Ann. of Math. (2), 1934, vol. 35, no. 2, pp. 284–305.

Fedorov, Yu.N., The Motion of a Rigid Body in a Spherical Support, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1988, no. 5, pp. 91–93 (Russian).

Fedorov, Yu.N., Two Integrable Nonholonomic Systems in Classical Dynamics, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1989, no. 4, pp. 38–41 (Russian).

Jovanović, B., LR and L + R Systems, J. Phys. A, 2009, vol. 42, 225202, 18 pp.

Kilin, A.A., The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.

Koiller, J. and Ehlers, K., Rubber Rolling over a Sphere, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 127–152.

Kumagai, M. and Ochiai, T., Development of a Robot Balancing on a Ball, Proc. Internat. Conf. on Control, Automation and Systems (Seoul, Oct. 14–17, 2008), pp. 433–438.

Lauwers, T. B., Kantor, G. A. and Hollis, R. L., A Dynamically Stable Single-Wheeled Mobile Robot with Inverse Mouse-Ball Drive, Proc. IEEE Intern. Conf. on Robotics and Automation (Orlando, FL, May 15–19, 2006), pp. 2884–2889.

Markeev, A.P., Integrability of the Problem of Rolling of a Sphere with a Multiply Connected Cavity Filled with an Ideal Fluid, Izv. Akad. Nauk SSSR. Mekhanika tverdogo tela, 1986, vol. 21, no. 1, pp. 64–65 [English transl.: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 149–151].

Nagarajan, U., Kantor, G., and Hollis, R. L., Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot, Proc. IEEE Intern. Conf. on Robotics and Automation (Kobe, Japan, May 12–17, 2009), pp. 3743–3748.

Shen, J., Schneider, D.A., and Bloch, A.M., Controllability and Motion Planning of a Multibody Chaplygin’s Sphere and Chaplygin’s Top, Internat. J. Robust Nonlinear Control, 2008, vol. 18, no. 9, pp. 905–945.

Veselov, A.P. and Veselova, L. E., Integrable Nonholonomic Systems on Lie Groups, Mat. Zametki, 1988, vol. 44, no. 5, pp. 604–619 [Math. Notes, 1988, vol. 44, nos. 5–6, pp. 810–819].

Veselova, L.E., New Cases of the Integrability of the Equations of Motion of a Rigid Body in the Presence of a Nonholonomic Constraint, in Geometry, Differential Equations and Mechanics, Moscow: Mosk. Gos. Univ., 1986, pp. 64–68 (Russian).

Wilson, J. L., Mazzoleni, A.P., DeJarnette, F.R., Antol, J., Hajos, G.A., and Strickland, C. V., Design, Analysis, and Testing of Mars Tumbleweed Rover Concepts, J. Spacecraft Rockets, 2008, vol. 45, no. 2, pp. 370–382.

Xu, Ya. and Ou, Yo., Control of Single Wheel Robots, Springer Tracts in Advanced Robotics, vol. 20, Berlin-New York: Springer, 2005.

http://www.dyson.co.uk