Generalized Born Models of Macromolecular Solvation Effects

Annual Review of Physical Chemistry - Tập 51 Số 1 - Trang 129-152 - 2000
Donald Bashford1, David A. Case2
1Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA. [email protected]
2Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037

Tóm tắt

▪ Abstract  It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

Từ khóa


Tài liệu tham khảo

10.1021/cr00031a013

10.1021/j100108a002

10.1002/9780470125823.ch4

10.1016/S0076-6879(98)95040-6

10.1016/S0065-3233(08)60650-6

10.1021/cr960149m

10.1002/jcc.540120405

10.1002/jcc.540140114

10.1002/(SICI)1096-987X(199605)17:7<864::AID-JCC10>3.0.CO;2-B

10.1002/(SICI)1096-987X(199710)18:13<1591::AID-JCC3>3.0.CO;2-M

10.1002/(SICI)1096-987X(199703)18:4<569::AID-JCC10>3.0.CO;2-B

10.1002/(SICI)1096-987X(19970130)18:2<268::AID-JCC11>3.0.CO;2-E

10.1021/j100116a025

10.1007/BF02427575

10.1021/ja00172a038

10.1016/0009-2614(95)01082-K

10.1021/jp961710n

10.1021/jp961992r

10.1021/jp962156k

10.1021/jp984440c

10.1007/s002140050460

10.1007/BF01881023

Jackson JD, 1975, Classical Electrodynamics.

10.1021/jp9714227

10.1021/jp982533o

10.1063/1.1749489

10.1021/ja01577a001

10.1146/annurev.physchem.50.1.145

10.1016/S0022-2836(99)80019-9

Luo R, 1997, J. Phys. Chem. B, 101, 11216

10.1002/(SICI)1097-0134(19991001)37:1<88::AID-PROT9>3.0.CO;2-O

Arora N, Bashford D. Submitted for publication

10.1002/(SICI)1096-987X(199805)19:7<769::AID-JCC7>3.0.CO;2-O

10.1002/jcc.540160702

10.1021/jp982007x

10.1021/ja9939385

10.1021/ja981844+

10.1002/(SICI)1096-987X(19991115)20:14<1533::AID-JCC6>3.0.CO;2-3

10.1080/07391102.1998.10508279

10.1080/07391102.1998.10508245

10.1007/BF00173467

10.1021/jp9521621

10.1016/S0301-4622(98)00229-4

10.1021/jp982715i

Zhang LY, Gallicchio E, Levy RM. 1999. See Ref.74, pp. 451–72

10.1021/jp9527315

10.1002/prot.340180205

10.1006/jmbi.1995.0502

10.1006/jmbi.1995.0503

10.1006/jmbi.1996.0364

10.1021/ja963516k

10.1016/S1359-0278(97)00004-7

10.1006/jmbi.1997.1103

10.1006/jmbi.1998.2172

10.1007/s002140050429

10.1002/(SICI)1096-987X(199902)20:3<322::AID-JCC4>3.0.CO;2-Q

10.1016/0959-440X(91)90058-2

10.1002/prot.340150305

10.1021/jp994072s

10.1126/science.6879170

10.1002/(SICI)1097-0134(19980901)32:4<399::AID-PROT1>3.0.CO;2-C

10.1002/jcc.540160904

Elcock AH, Potter Mj, McCammon JA. 1997. InComputer Simulations of Biomolecular Systems, ed. WF van Gunsteren, PK Weiner, AJ Wilkinson, 3:244–61. Leiden, Ger.: ESCOM Sci.

10.1002/jcc.540040211

Case DA, 1999, AMBER 6.

Macke TJ, Case DA. 1998. InMolecular Modeling of Nucleic Acids, ed. NB Leontis, J Santa Lucia, pp. 379–93. Washington, DC: Am. Chem. Soc.

10.1016/S0006-3495(99)77471-0

10.1021/cr00020a011

10.1021/ja990935j

10.1021/jp971632j

10.1016/S0959-440X(98)80041-9

Tucker SC, Vivian JT. 1999. See Ref.74, pp. 359–81

10.1021/jp953087x

Pratt LR, 1999, Simulation and Theory of Electrostatic Interactions in Solution.