Generalized ℚ-curves and factors of J1(N)

Springer Science and Business Media LLC - Tập 70 - Trang 51-61 - 2000
Sigrid Wortmann1
1Mathematisches Institut der Universität Heidelberg, Heidelberg

Tài liệu tham khảo

Alexander A. Beilinson,Higher regulators of modular curves, Applications of algebraicK-theory to algebraic geometry and number theory, vol. 55, Contemporary Mathematics, no. I, 1986, Proc. AMS-IMS-SIAM Joint Summer Res. Conf., Boulder/Colo. 1983, pp. 1–34. Joe P. Buhler andBenedict H. Gross, Arithmetic on elliptic curves with complex multiplication. II,Invent. Math. 79 (1985), no. 1, 11–29. Christopher Deninger, Higher regulators and HeckeL-series of imaginary quadratic fields II,Ann. of Math. (2)132 (1990), no. 1, 131–158. Gerd Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.Math. 73 (1983), no. 3, 349–366. Benedict H. Gross,Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Mathematics, vol. 776, Springer-Verlag, Berlin, 1980, With an appendix by B. Mazur. Catherine Goldstein andNorbert Schappacher, Séries d’Eisenstein et fonctionsL de courbes elliptiques à multiplication complexe,J. Reine Angew. Math. 327 (1981), 184–218. Jan Nekovář,Beilinsor’s conjectures, Motives (Seattle, WA, 1991), Amer. Math. Soc. (Providence, RI), 1994, pp. 537–570. Michael Rapoport, Norbert Schappacher, andPeter Schneider (eds.),Beilinson’s conjecture on special values of L-functions, Perspectives in Mathematics, vol. 4, Boston, MA, Academic Press Inc., 1988. Peter Schneider,Introduction to the Beilinson Conjectures, Beilinson’s Conjectures on Special Values ofL-functions (Michael Rapoport,Norbert Schappacher, andPeter Schneider, eds.), Perspectives in Mathematics, vol. 4, 1987. Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de Gal(\(\bar {\mathbb{Q}}/{\mathbb{Q}}\)),Duke Math. J. 54 (1987), no. 1, 179–230. Goro Shimura,Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, vol. 11, Princeton University Press, 1971. —, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields,Nagoya Math. J. 43 (1971), 199–208. —, On the zeta-function of an abelian variety with complex multiplication.,Ann. of Math. (2)94 (1971), 504–533. —, On the factors of the Jacobian variety of a modular function field,J. Math. Soc. Japan 25 (1973), 523–544. Jean-Pierre Serre andJohn Tate, Good reduction of abelian varieties,Ann. of Math. (2)88 (1968), 492–517.